Mercurial > hg > Members > kono > Proof > galois
annotate Putil.agda @ 254:a5b3061f15ee
sym5n
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 15 Dec 2020 08:50:32 +0900 |
parents | d782dd481a26 |
children |
rev | line source |
---|---|
90 | 1 {-# OPTIONS --allow-unsolved-metas #-} |
48 | 2 module Putil where |
0 | 3 |
4 open import Level hiding ( suc ; zero ) | |
5 open import Algebra | |
6 open import Algebra.Structures | |
112 | 7 open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_) |
8 open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp ) | |
0 | 9 open import Data.Fin.Permutation |
10 open import Function hiding (id ; flip) | |
11 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) | |
12 open import Function.LeftInverse using ( _LeftInverseOf_ ) | |
13 open import Function.Equality using (Π) | |
17 | 14 open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) |
15 open import Data.Nat.Properties -- using (<-trans) | |
153 | 16 open import Relation.Binary.PropositionalEquality hiding ( [_] ) |
80 | 17 open import Data.List using (List; []; _∷_ ; length ; _++_ ; head ; tail ) renaming (reverse to rev ) |
16 | 18 open import nat |
0 | 19 |
48 | 20 open import Symmetric |
0 | 21 |
22 | |
16 | 23 open import Relation.Nullary |
24 open import Data.Empty | |
17 | 25 open import Relation.Binary.Core |
80 | 26 open import Relation.Binary.Definitions |
17 | 27 open import fin |
16 | 28 |
38 | 29 -- An inductive construction of permutation |
34 | 30 |
31 pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) | |
32 pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where | |
33 | 33 p→ : Fin (suc n) → Fin (suc n) |
34 | 34 p→ zero = zero |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
35 p→ (suc x) = suc ( perm ⟨$⟩ʳ x) |
33 | 36 |
34 | 37 p← : Fin (suc n) → Fin (suc n) |
38 p← zero = zero | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
39 p← (suc x) = suc ( perm ⟨$⟩ˡ x) |
34 | 40 |
41 piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x | |
42 piso← zero = refl | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
43 piso← (suc x) = cong (λ k → suc k ) (inverseʳ perm) |
33 | 44 |
34 | 45 piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x |
46 piso→ zero = refl | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
47 piso→ (suc x) = cong (λ k → suc k ) (inverseˡ perm) |
33 | 48 |
34 | 49 pswap : {n : ℕ } → Permutation n n → Permutation (suc (suc n)) (suc (suc n )) |
50 pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where | |
51 p→ : Fin (suc (suc n)) → Fin (suc (suc n)) | |
52 p→ zero = suc zero | |
53 p→ (suc zero) = zero | |
62 | 54 p→ (suc (suc x)) = suc ( suc ( perm ⟨$⟩ʳ x) ) |
18 | 55 |
34 | 56 p← : Fin (suc (suc n)) → Fin (suc (suc n)) |
57 p← zero = suc zero | |
58 p← (suc zero) = zero | |
62 | 59 p← (suc (suc x)) = suc ( suc ( perm ⟨$⟩ˡ x) ) |
34 | 60 |
61 piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x | |
62 piso← zero = refl | |
63 piso← (suc zero) = refl | |
62 | 64 piso← (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm) |
16 | 65 |
34 | 66 piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x |
67 piso→ zero = refl | |
68 piso→ (suc zero) = refl | |
62 | 69 piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseˡ perm) |
34 | 70 |
44 | 71 psawpn : {n : ℕ} → 1 < n → Permutation n n |
72 psawpn {suc zero} (s≤s ()) | |
73 psawpn {suc n} (s≤s (s≤s x)) = pswap pid | |
34 | 74 |
35 | 75 pfill : { n m : ℕ } → m ≤ n → Permutation m m → Permutation n n |
76 pfill {n} {m} m≤n perm = pfill1 (n - m) (n-m<n n m ) (subst (λ k → Permutation k k ) (n-n-m=m m≤n ) perm) where | |
77 pfill1 : (i : ℕ ) → i ≤ n → Permutation (n - i) (n - i) → Permutation n n | |
78 pfill1 0 _ perm = perm | |
79 pfill1 (suc i) i<n perm = pfill1 i (≤to< i<n) (subst (λ k → Permutation k k ) (si-sn=i-n i<n ) ( pprep perm ) ) | |
34 | 80 |
48 | 81 -- |
82 -- psawpim (inseert swap at position m ) | |
83 -- | |
45 | 84 psawpim : {n m : ℕ} → suc (suc m) ≤ n → Permutation n n |
85 psawpim {n} {m} m≤n = pfill m≤n ( psawpn (s≤s (s≤s z≤n)) ) | |
86 | |
87 n≤ : (i : ℕ ) → {j : ℕ } → i ≤ i + j | |
88 n≤ (zero) {j} = z≤n | |
89 n≤ (suc i) {j} = s≤s ( n≤ i ) | |
90 | |
91 lem0 : {n : ℕ } → n ≤ n | |
92 lem0 {zero} = z≤n | |
93 lem0 {suc n} = s≤s lem0 | |
94 | |
95 lem00 : {n m : ℕ } → n ≡ m → n ≤ m | |
96 lem00 refl = lem0 | |
44 | 97 |
80 | 98 plist1 : {n : ℕ} → Permutation (suc n) (suc n) → (i : ℕ ) → i < suc n → List ℕ |
99 plist1 {n} perm zero _ = toℕ ( perm ⟨$⟩ˡ (fromℕ< {zero} (s≤s z≤n))) ∷ [] | |
100 plist1 {n} perm (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ< (s≤s lt))) ∷ plist1 perm i (<-trans lt a<sa) | |
101 | |
37 | 102 plist : {n : ℕ} → Permutation n n → List ℕ |
103 plist {0} perm = [] | |
80 | 104 plist {suc n} perm = rev (plist1 perm n a<sa) |
105 | |
129 | 106 -- |
89 | 107 -- from n-1 length create n length inserting new element at position m |
129 | 108 -- |
89 | 109 -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] |
110 -- 1 ∷ 0 ∷ 2 ∷ 3 ∷ [] plist ( pins {3} (n≤ 1) ) 1 ∷ 0 ∷ 2 ∷ 3 ∷ [] | |
111 -- 1 ∷ 2 ∷ 0 ∷ 3 ∷ [] plist ( pins {3} (n≤ 2) ) 2 ∷ 0 ∷ 1 ∷ 3 ∷ [] | |
112 -- 1 ∷ 2 ∷ 3 ∷ 0 ∷ [] plist ( pins {3} (n≤ 3) ) 3 ∷ 0 ∷ 1 ∷ 2 ∷ [] | |
129 | 113 -- |
114 -- defined by pprep and pswap | |
115 -- | |
94 | 116 -- pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) |
117 -- pins {_} {zero} _ = pid | |
118 -- pins {suc _} {suc zero} _ = pswap pid | |
119 -- pins {suc (suc n)} {suc m} (s≤s m<n) = pins1 (suc m) (suc (suc n)) lem0 where | |
120 -- pins1 : (i j : ℕ ) → j ≤ suc (suc n) → Permutation (suc (suc (suc n ))) (suc (suc (suc n))) | |
121 -- pins1 _ zero _ = pid | |
122 -- pins1 zero _ _ = pid | |
123 -- pins1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j} (s≤s (s≤s si≤n)) ∘ₚ pins1 i j (≤-trans si≤n a≤sa ) | |
89 | 124 |
90 | 125 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) |
91 | 126 open ≡-Reasoning |
90 | 127 |
94 | 128 pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) |
129 pins {_} {zero} _ = pid | |
130 pins {suc n} {suc m} (s≤s m≤n) = permutation p← p→ record { left-inverse-of = piso← ; right-inverse-of = piso→ } where | |
89 | 131 |
132 next : Fin (suc (suc n)) → Fin (suc (suc n)) | |
133 next zero = suc zero | |
91 | 134 next (suc x) = fromℕ< (≤-trans (fin<n {_} {x} ) a≤sa ) |
89 | 135 |
136 p→ : Fin (suc (suc n)) → Fin (suc (suc n)) | |
137 p→ x with <-cmp (toℕ x) (suc m) | |
90 | 138 ... | tri< a ¬b ¬c = fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) )) |
89 | 139 ... | tri≈ ¬a b ¬c = zero |
140 ... | tri> ¬a ¬b c = x | |
141 | |
142 p← : Fin (suc (suc n)) → Fin (suc (suc n)) | |
143 p← zero = fromℕ< (s≤s (s≤s m≤n)) | |
144 p← (suc x) with <-cmp (toℕ x) (suc m) | |
91 | 145 ... | tri< a ¬b ¬c = fromℕ< (≤-trans (fin<n {_} {x}) a≤sa ) |
89 | 146 ... | tri≈ ¬a b ¬c = suc x |
147 ... | tri> ¬a ¬b c = suc x | |
90 | 148 |
149 mm : toℕ (fromℕ< {suc m} {suc (suc n)} (s≤s (s≤s m≤n))) ≡ suc m | |
150 mm = toℕ-fromℕ< (s≤s (s≤s m≤n)) | |
151 | |
91 | 152 mma : (x : Fin (suc n) ) → suc (toℕ x) ≤ suc m → toℕ ( fromℕ< (≤-trans (fin<n {_} {x}) a≤sa ) ) ≤ m |
153 mma x (s≤s x<sm) = subst (λ k → k ≤ m) (sym (toℕ-fromℕ< (≤-trans fin<n a≤sa ) )) x<sm | |
89 | 154 |
91 | 155 p3 : (x : Fin (suc n) ) → toℕ (fromℕ< (≤-trans (fin<n {_} {suc x} ) (s≤s a≤sa))) ≡ suc (toℕ x) |
156 p3 x = begin | |
157 toℕ (fromℕ< (≤-trans (fin<n {_} {suc x} ) (s≤s a≤sa))) | |
158 ≡⟨ toℕ-fromℕ< ( s≤s ( ≤-trans fin<n a≤sa ) ) ⟩ | |
159 suc (toℕ x) | |
160 ∎ | |
92 | 161 |
162 piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x | |
163 piso→ zero with <-cmp (toℕ (fromℕ< (≤-trans (s≤s z≤n) (s≤s (s≤s m≤n) )))) (suc m) | |
164 ... | tri< a ¬b ¬c = refl | |
165 piso→ (suc x) with <-cmp (toℕ (suc x)) (suc m) | |
94 | 166 ... | tri≈ ¬a refl ¬c = p13 where |
167 p13 : fromℕ< (s≤s (s≤s m≤n)) ≡ suc x | |
168 p13 = cong (λ k → suc k ) (fromℕ<-toℕ _ (s≤s m≤n) ) | |
95 | 169 ... | tri> ¬a ¬b c = p16 (suc x) refl where |
170 p16 : (y : Fin (suc (suc n))) → y ≡ suc x → p← y ≡ suc x | |
171 p16 zero eq = ⊥-elim ( nat-≡< (cong (λ k → suc (toℕ k) ) eq) (s≤s (s≤s (z≤n)))) | |
172 p16 (suc y) eq with <-cmp (toℕ y) (suc m) -- suc (suc m) < toℕ (suc x) | |
96 | 173 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< refl ( ≤-trans c (subst (λ k → k < suc m) p17 a )) ) where |
174 -- x = suc m case, c : suc (suc m) ≤ suc (toℕ x), a : suc (toℕ y) ≤ suc m, suc y ≡ suc x | |
175 p17 : toℕ y ≡ toℕ x | |
176 p17 with <-cmp (toℕ y) (toℕ x) | cong toℕ eq | |
177 ... | tri< a ¬b ¬c | seq = ⊥-elim ( nat-≡< seq (s≤s a) ) | |
178 ... | tri≈ ¬a b ¬c | seq = b | |
179 ... | tri> ¬a ¬b c | seq = ⊥-elim ( nat-≡< (sym seq) (s≤s c)) | |
95 | 180 ... | tri≈ ¬a b ¬c = eq |
181 ... | tri> ¬a ¬b c₁ = eq | |
92 | 182 ... | tri< a ¬b ¬c = p10 (fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) ))) refl where |
183 p10 : (y : Fin (suc (suc n)) ) → y ≡ fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) )) → p← y ≡ suc x | |
184 p10 zero () | |
93 | 185 p10 (suc y) eq = p15 where |
186 p12 : toℕ y ≡ suc (toℕ x) | |
187 p12 = begin | |
188 toℕ y | |
189 ≡⟨ cong (λ k → Data.Nat.pred (toℕ k)) eq ⟩ | |
190 toℕ (fromℕ< (≤-trans a (s≤s m≤n))) | |
191 ≡⟨ toℕ-fromℕ< {suc (toℕ x)} {suc n} (≤-trans a (s≤s m≤n)) ⟩ | |
192 suc (toℕ x) | |
92 | 193 ∎ |
93 | 194 p15 : p← (suc y) ≡ suc x |
195 p15 with <-cmp (toℕ y) (suc m) -- eq : suc y ≡ suc (suc (fromℕ< (≤-pred (≤-trans a (s≤s m≤n))))) , a : suc x < suc m | |
196 ... | tri< a₁ ¬b ¬c = p11 where | |
197 p11 : fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) ≡ suc x | |
198 p11 = begin | |
199 fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) | |
251 | 200 ≡⟨ lemma10 {suc (suc n)} {_} {_} p12 {≤-trans (fin<n {_} {y}) a≤sa} {s≤s (fin<n {suc n} {x} )} ⟩ |
93 | 201 suc (fromℕ< (fin<n {suc n} {x} )) |
202 ≡⟨ cong suc (fromℕ<-toℕ x _ ) ⟩ | |
203 suc x | |
204 ∎ | |
205 ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (subst (λ k → k < suc m) (sym p12) a )) -- suc x < suc m -> y = suc x → toℕ y < suc m | |
206 ... | tri> ¬a ¬b c = ⊥-elim ( nat-<> c (subst (λ k → k < suc m) (sym p12) a )) | |
92 | 207 |
89 | 208 piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x |
90 | 209 piso← zero with <-cmp (toℕ (fromℕ< (s≤s (s≤s m≤n)))) (suc m) | mm |
210 ... | tri< a ¬b ¬c | t = ⊥-elim ( ¬b t ) | |
211 ... | tri≈ ¬a b ¬c | t = refl | |
212 ... | tri> ¬a ¬b c | t = ⊥-elim ( ¬b t ) | |
213 piso← (suc x) with <-cmp (toℕ x) (suc m) | |
91 | 214 ... | tri> ¬a ¬b c with <-cmp (toℕ (suc x)) (suc m) |
215 ... | tri< a ¬b₁ ¬c = ⊥-elim ( nat-<> a (<-trans c a<sa ) ) | |
216 ... | tri≈ ¬a₁ b ¬c = ⊥-elim ( nat-≡< (sym b) (<-trans c a<sa )) | |
217 ... | tri> ¬a₁ ¬b₁ c₁ = refl | |
218 piso← (suc x) | tri≈ ¬a b ¬c with <-cmp (toℕ (suc x)) (suc m) | |
219 ... | tri< a ¬b ¬c₁ = ⊥-elim ( nat-≡< b (<-trans a<sa a) ) | |
220 ... | tri≈ ¬a₁ refl ¬c₁ = ⊥-elim ( nat-≡< b a<sa ) | |
221 ... | tri> ¬a₁ ¬b c = refl | |
222 piso← (suc x) | tri< a ¬b ¬c with <-cmp (toℕ ( fromℕ< (≤-trans (fin<n {_} {x}) a≤sa ) )) (suc m) | |
90 | 223 ... | tri≈ ¬a b ¬c₁ = ⊥-elim ( ¬a (s≤s (mma x a))) |
224 ... | tri> ¬a ¬b₁ c = ⊥-elim ( ¬a (s≤s (mma x a))) | |
225 ... | tri< a₁ ¬b₁ ¬c₁ = p0 where | |
226 p2 : suc (suc (toℕ x)) ≤ suc (suc n) | |
227 p2 = s≤s (fin<n {suc n} {x}) | |
91 | 228 p6 : suc (toℕ (fromℕ< (≤-trans (fin<n {_} {suc x}) (s≤s a≤sa)))) ≤ suc (suc n) |
90 | 229 p6 = s≤s (≤-trans a₁ (s≤s m≤n)) |
230 p0 : fromℕ< (≤-trans (s≤s a₁) (s≤s (s≤s m≤n) )) ≡ suc x | |
231 p0 = begin | |
232 fromℕ< (≤-trans (s≤s a₁) (s≤s (s≤s m≤n) )) | |
233 ≡⟨⟩ | |
234 fromℕ< (s≤s (≤-trans a₁ (s≤s m≤n))) | |
251 | 235 ≡⟨ lemma10 {suc (suc n)} (p3 x) {p6} {p2} ⟩ |
90 | 236 fromℕ< ( s≤s (fin<n {suc n} {x}) ) |
91 | 237 ≡⟨⟩ |
90 | 238 suc (fromℕ< (fin<n {suc n} {x} )) |
91 | 239 ≡⟨ cong suc (fromℕ<-toℕ x _ ) ⟩ |
90 | 240 suc x |
91 | 241 ∎ |
90 | 242 |
94 | 243 t7 = plist (pins {3} (n≤ 3)) ∷ plist (flip ( pins {3} (n≤ 3) )) ∷ plist ( pins {3} (n≤ 3) ∘ₚ flip ( pins {3} (n≤ 3))) ∷ [] |
244 -- t8 = {!!} | |
89 | 245 |
97 | 246 open import logic |
247 | |
248 open _∧_ | |
249 | |
250 perm1 : {perm : Permutation 1 1 } {q : Fin 1} → (perm ⟨$⟩ʳ q ≡ # 0) ∧ ((perm ⟨$⟩ˡ q ≡ # 0)) | |
251 perm1 {p} {q} = ⟪ perm01 _ _ , perm00 _ _ ⟫ where | |
252 perm01 : (x y : Fin 1) → (p ⟨$⟩ʳ x) ≡ y | |
253 perm01 x y with p ⟨$⟩ʳ x | |
254 perm01 zero zero | zero = refl | |
255 perm00 : (x y : Fin 1) → (p ⟨$⟩ˡ x) ≡ y | |
256 perm00 x y with p ⟨$⟩ˡ x | |
257 perm00 zero zero | zero = refl | |
258 | |
259 | |
129 | 260 ---- |
261 -- find insertion point of pins | |
262 ---- | |
97 | 263 p=0 : {n : ℕ } → (perm : Permutation (suc n) (suc n) ) → ((perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ⟨$⟩ˡ (# 0)) ≡ # 0 |
264 p=0 {zero} perm with ((perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ⟨$⟩ˡ (# 0)) | |
265 ... | zero = refl | |
266 p=0 {suc n} perm with perm ⟨$⟩ʳ (# 0) | inspect (_⟨$⟩ʳ_ perm ) (# 0)| toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) | inspect toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) | |
267 ... | zero | record { eq = e} | m<n | _ = p001 where | |
268 p001 : perm ⟨$⟩ˡ ( pins m<n ⟨$⟩ʳ zero) ≡ zero | |
269 p001 = subst (λ k → perm ⟨$⟩ˡ k ≡ zero ) e (inverseˡ perm) | |
270 ... | suc t | record { eq = e } | m<n | record { eq = e1 } = p002 where -- m<n : suc (toℕ t) ≤ suc n | |
271 p002 : perm ⟨$⟩ˡ ( pins m<n ⟨$⟩ʳ zero) ≡ zero | |
272 p002 = p005 zero (toℕ t) refl m<n refl where -- suc (toℕ t) ≤ suc n | |
273 p003 : (s : Fin (suc (suc n))) → s ≡ (perm ⟨$⟩ʳ (# 0)) → perm ⟨$⟩ˡ s ≡ # 0 | |
274 p003 s eq = subst (λ k → perm ⟨$⟩ˡ k ≡ zero ) (sym eq) (inverseˡ perm) | |
275 p005 : (x : Fin (suc (suc n))) → (m : ℕ ) → x ≡ zero → (m≤n : suc m ≤ suc n ) → m ≡ toℕ t → perm ⟨$⟩ˡ ( pins m≤n ⟨$⟩ʳ zero) ≡ zero | |
276 p005 zero m eq (s≤s m≤n) meq = p004 where | |
277 p004 : perm ⟨$⟩ˡ (fromℕ< (s≤s (s≤s m≤n))) ≡ zero | |
278 p004 = p003 (fromℕ< (s≤s (s≤s m≤n))) ( | |
279 begin | |
280 fromℕ< (s≤s (s≤s m≤n)) | |
251 | 281 ≡⟨ lemma10 {suc (suc n)} (cong suc meq) {s≤s (s≤s m≤n)} {subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) } ⟩ |
97 | 282 fromℕ< (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) |
283 ≡⟨ fromℕ<-toℕ {suc (suc n)} (suc t) (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) ⟩ | |
284 suc t | |
285 ≡⟨ sym e ⟩ | |
286 (perm ⟨$⟩ʳ (# 0)) | |
287 ∎ ) | |
288 | |
129 | 289 ---- |
290 -- other elements are preserved in pins | |
291 ---- | |
101 | 292 px=x : {n : ℕ } → (x : Fin (suc n)) → pins ( toℕ≤pred[n] x ) ⟨$⟩ʳ (# 0) ≡ x |
293 px=x {n} zero = refl | |
103 | 294 px=x {suc n} (suc x) = p001 where |
295 p002 : fromℕ< (s≤s (toℕ≤pred[n] x)) ≡ x | |
296 p002 = fromℕ<-toℕ x (s≤s (toℕ≤pred[n] x)) | |
297 p001 : (pins (toℕ≤pred[n] (suc x)) ⟨$⟩ʳ (# 0)) ≡ suc x | |
298 p001 with <-cmp 0 ((toℕ x)) | |
299 ... | tri< a ¬b ¬c = cong suc p002 | |
300 ... | tri≈ ¬a b ¬c = cong suc p002 | |
97 | 301 |
302 -- pp : {n : ℕ } → (perm : Permutation (suc n) (suc n) ) → Fin (suc n) | |
303 -- pp perm → (( perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ⟨$⟩ˡ (# 0)) | |
304 | |
80 | 305 plist2 : {n : ℕ} → Permutation (suc n) (suc n) → (i : ℕ ) → i < suc n → List ℕ |
306 plist2 {n} perm zero _ = toℕ ( perm ⟨$⟩ʳ (fromℕ< {zero} (s≤s z≤n))) ∷ [] | |
307 plist2 {n} perm (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ʳ (fromℕ< (s≤s lt))) ∷ plist2 perm i (<-trans lt a<sa) | |
308 | |
309 plist0 : {n : ℕ} → Permutation n n → List ℕ | |
310 plist0 {0} perm = [] | |
311 plist0 {suc n} perm = plist2 perm n a<sa | |
312 | |
85 | 313 open _=p=_ |
314 | |
86
c5329963c583
(x : Permutation 1 1 ) → x =p= pid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
85
diff
changeset
|
315 -- |
c5329963c583
(x : Permutation 1 1 ) → x =p= pid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
85
diff
changeset
|
316 -- plist cong |
c5329963c583
(x : Permutation 1 1 ) → x =p= pid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
85
diff
changeset
|
317 -- |
85 | 318 ←pleq : {n : ℕ} → (x y : Permutation n n ) → x =p= y → plist0 x ≡ plist0 y |
319 ←pleq {zero} x y eq = refl | |
320 ←pleq {suc n} x y eq = ←pleq1 n a<sa where | |
321 ←pleq1 : (i : ℕ ) → (i<sn : i < suc n ) → plist2 x i i<sn ≡ plist2 y i i<sn | |
322 ←pleq1 zero _ = cong ( λ k → toℕ k ∷ [] ) ( peq eq (fromℕ< {zero} (s≤s z≤n))) | |
323 ←pleq1 (suc i) (s≤s lt) = cong₂ ( λ j k → toℕ j ∷ k ) ( peq eq (fromℕ< (s≤s lt))) ( ←pleq1 i (<-trans lt a<sa) ) | |
80 | 324 |
325 headeq : {A : Set } → {x y : A } → {xt yt : List A } → (x ∷ xt) ≡ (y ∷ yt) → x ≡ y | |
326 headeq refl = refl | |
327 | |
328 taileq : {A : Set } → {x y : A } → {xt yt : List A } → (x ∷ xt) ≡ (y ∷ yt) → xt ≡ yt | |
329 taileq refl = refl | |
330 | |
86
c5329963c583
(x : Permutation 1 1 ) → x =p= pid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
85
diff
changeset
|
331 -- |
129 | 332 -- plist injection / equalizer |
333 -- | |
334 -- if plist0 of two perm looks the same, the permutations are the same | |
86
c5329963c583
(x : Permutation 1 1 ) → x =p= pid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
85
diff
changeset
|
335 -- |
80 | 336 pleq : {n : ℕ} → (x y : Permutation n n ) → plist0 x ≡ plist0 y → x =p= y |
337 pleq {0} x y refl = record { peq = λ q → pleq0 q } where | |
338 pleq0 : (q : Fin 0 ) → (x ⟨$⟩ʳ q) ≡ (y ⟨$⟩ʳ q) | |
339 pleq0 () | |
340 pleq {suc n} x y eq = record { peq = λ q → pleq1 n a<sa eq q fin<n } where | |
341 pleq1 : (i : ℕ ) → (i<sn : i < suc n ) → plist2 x i i<sn ≡ plist2 y i i<sn → (q : Fin (suc n)) → toℕ q < suc i → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q | |
81 | 342 pleq1 zero i<sn eq q q<i with <-cmp (toℕ q) zero |
343 ... | tri< () ¬b ¬c | |
344 ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i ) | |
345 ... | tri≈ ¬a b ¬c = begin | |
346 x ⟨$⟩ʳ q | |
347 ≡⟨ cong ( λ k → x ⟨$⟩ʳ k ) (toℕ-injective b )⟩ | |
348 x ⟨$⟩ʳ zero | |
349 ≡⟨ toℕ-injective (headeq eq) ⟩ | |
350 y ⟨$⟩ʳ zero | |
351 ≡⟨ cong ( λ k → y ⟨$⟩ʳ k ) (sym (toℕ-injective b )) ⟩ | |
352 y ⟨$⟩ʳ q | |
91 | 353 ∎ |
80 | 354 pleq1 (suc i) (s≤s i<sn) eq q q<i with <-cmp (toℕ q) (suc i) |
355 ... | tri< a ¬b ¬c = pleq1 i (<-trans i<sn a<sa ) (taileq eq) q a | |
81 | 356 ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i ) |
80 | 357 ... | tri≈ ¬a b ¬c = begin |
358 x ⟨$⟩ʳ q | |
359 ≡⟨ cong (λ k → x ⟨$⟩ʳ k) (pleq3 b) ⟩ | |
360 x ⟨$⟩ʳ (suc (fromℕ< i<sn)) | |
361 ≡⟨ toℕ-injective pleq2 ⟩ | |
362 y ⟨$⟩ʳ (suc (fromℕ< i<sn)) | |
363 ≡⟨ cong (λ k → y ⟨$⟩ʳ k) (sym (pleq3 b)) ⟩ | |
364 y ⟨$⟩ʳ q | |
365 ∎ where | |
366 pleq3 : toℕ q ≡ suc i → q ≡ suc (fromℕ< i<sn) | |
367 pleq3 tq=si = toℕ-injective ( begin | |
368 toℕ q | |
369 ≡⟨ b ⟩ | |
370 suc i | |
371 ≡⟨ sym (toℕ-fromℕ< (s≤s i<sn)) ⟩ | |
372 toℕ (fromℕ< (s≤s i<sn)) | |
373 ≡⟨⟩ | |
374 toℕ (suc (fromℕ< i<sn)) | |
91 | 375 ∎ ) |
80 | 376 pleq2 : toℕ ( x ⟨$⟩ʳ (suc (fromℕ< i<sn)) ) ≡ toℕ ( y ⟨$⟩ʳ (suc (fromℕ< i<sn)) ) |
377 pleq2 = headeq eq | |
37 | 378 |
112 | 379 is-=p= : {n : ℕ} → (x y : Permutation n n ) → Dec (x =p= y ) |
380 is-=p= {zero} x y = yes record { peq = λ () } | |
381 is-=p= {suc n} x y with ℕL-eq? (plist0 x ) ( plist0 y ) | |
382 ... | yes t = yes (pleq x y t) | |
383 ... | no t = no ( contra-position (←pleq x y) t ) | |
384 | |
87 | 385 pprep-cong : {n : ℕ} → {x y : Permutation n n } → x =p= y → pprep x =p= pprep y |
386 pprep-cong {n} {x} {y} x=y = record { peq = pprep-cong1 } where | |
387 pprep-cong1 : (q : Fin (suc n)) → (pprep x ⟨$⟩ʳ q) ≡ (pprep y ⟨$⟩ʳ q) | |
388 pprep-cong1 zero = refl | |
389 pprep-cong1 (suc q) = begin | |
390 pprep x ⟨$⟩ʳ suc q | |
391 ≡⟨⟩ | |
392 suc ( x ⟨$⟩ʳ q ) | |
393 ≡⟨ cong ( λ k → suc k ) ( peq x=y q ) ⟩ | |
394 suc ( y ⟨$⟩ʳ q ) | |
395 ≡⟨⟩ | |
396 pprep y ⟨$⟩ʳ suc q | |
91 | 397 ∎ |
87 | 398 |
399 pprep-dist : {n : ℕ} → {x y : Permutation n n } → pprep (x ∘ₚ y) =p= (pprep x ∘ₚ pprep y) | |
400 pprep-dist {n} {x} {y} = record { peq = pprep-dist1 } where | |
401 pprep-dist1 : (q : Fin (suc n)) → (pprep (x ∘ₚ y) ⟨$⟩ʳ q) ≡ ((pprep x ∘ₚ pprep y) ⟨$⟩ʳ q) | |
402 pprep-dist1 zero = refl | |
403 pprep-dist1 (suc q) = cong ( λ k → suc k ) refl | |
404 | |
405 pswap-cong : {n : ℕ} → {x y : Permutation n n } → x =p= y → pswap x =p= pswap y | |
406 pswap-cong {n} {x} {y} x=y = record { peq = pswap-cong1 } where | |
407 pswap-cong1 : (q : Fin (suc (suc n))) → (pswap x ⟨$⟩ʳ q) ≡ (pswap y ⟨$⟩ʳ q) | |
408 pswap-cong1 zero = refl | |
409 pswap-cong1 (suc zero) = refl | |
410 pswap-cong1 (suc (suc q)) = begin | |
411 pswap x ⟨$⟩ʳ suc (suc q) | |
412 ≡⟨⟩ | |
413 suc (suc (x ⟨$⟩ʳ q)) | |
414 ≡⟨ cong ( λ k → suc (suc k) ) ( peq x=y q ) ⟩ | |
415 suc (suc (y ⟨$⟩ʳ q)) | |
416 ≡⟨⟩ | |
417 pswap y ⟨$⟩ʳ suc (suc q) | |
91 | 418 ∎ |
87 | 419 |
420 pswap-dist : {n : ℕ} → {x y : Permutation n n } → pprep (pprep (x ∘ₚ y)) =p= (pswap x ∘ₚ pswap y) | |
421 pswap-dist {n} {x} {y} = record { peq = pswap-dist1 } where | |
422 pswap-dist1 : (q : Fin (suc (suc n))) → ((pprep (pprep (x ∘ₚ y))) ⟨$⟩ʳ q) ≡ ((pswap x ∘ₚ pswap y) ⟨$⟩ʳ q) | |
423 pswap-dist1 zero = refl | |
424 pswap-dist1 (suc zero) = refl | |
425 pswap-dist1 (suc (suc q)) = cong ( λ k → suc (suc k) ) refl | |
86
c5329963c583
(x : Permutation 1 1 ) → x =p= pid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
85
diff
changeset
|
426 |
88 | 427 shlem→ : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → (p0=0 : perm ⟨$⟩ˡ (# 0) ≡ # 0 ) → (x : Fin (suc n) ) → perm ⟨$⟩ˡ x ≡ zero → x ≡ zero |
428 shlem→ perm p0=0 x px=0 = begin | |
61 | 429 x ≡⟨ sym ( inverseʳ perm ) ⟩ |
430 perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ x) ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) px=0 ⟩ | |
431 perm ⟨$⟩ʳ zero ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) (sym p0=0) ⟩ | |
432 perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ zero) ≡⟨ inverseʳ perm ⟩ | |
433 zero | |
130 | 434 ∎ |
54 | 435 |
88 | 436 shlem← : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → (p0=0 : perm ⟨$⟩ˡ (# 0) ≡ # 0 ) → (x : Fin (suc n)) → perm ⟨$⟩ʳ x ≡ zero → x ≡ zero |
437 shlem← perm p0=0 x px=0 = begin | |
61 | 438 x ≡⟨ sym (inverseˡ perm ) ⟩ |
439 perm ⟨$⟩ˡ ( perm ⟨$⟩ʳ x ) ≡⟨ cong (λ k → perm ⟨$⟩ˡ k ) px=0 ⟩ | |
440 perm ⟨$⟩ˡ zero ≡⟨ p0=0 ⟩ | |
441 zero | |
130 | 442 ∎ |
54 | 443 |
88 | 444 sh2 : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → (p0=0 : perm ⟨$⟩ˡ (# 0) ≡ # 0 ) → {x : Fin n} → ¬ perm ⟨$⟩ˡ (suc x) ≡ zero |
445 sh2 perm p0=0 {x} eq with shlem→ perm p0=0 (suc x) eq | |
446 sh2 perm p0=0 {x} eq | () | |
447 | |
448 sh1 : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → (p0=0 : perm ⟨$⟩ˡ (# 0) ≡ # 0 ) → {x : Fin n} → ¬ perm ⟨$⟩ʳ (suc x) ≡ zero | |
449 sh1 perm p0=0 {x} eq with shlem← perm p0=0 (suc x) eq | |
450 sh1 perm p0=0 {x} eq | () | |
451 | |
452 | |
453 -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] → 0 ∷ 1 ∷ 2 ∷ [] | |
454 shrink : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → perm ⟨$⟩ˡ (# 0) ≡ # 0 → Permutation n n | |
455 shrink {n} perm p0=0 = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where | |
57 | 456 |
61 | 457 p→ : Fin n → Fin n |
88 | 458 p→ x with perm ⟨$⟩ʳ (suc x) | inspect (_⟨$⟩ʳ_ perm ) (suc x) |
459 p→ x | zero | record { eq = e } = ⊥-elim ( sh1 perm p0=0 {x} e ) | |
61 | 460 p→ x | suc t | _ = t |
50 | 461 |
462 p← : Fin n → Fin n | |
88 | 463 p← x with perm ⟨$⟩ˡ (suc x) | inspect (_⟨$⟩ˡ_ perm ) (suc x) |
464 p← x | zero | record { eq = e } = ⊥-elim ( sh2 perm p0=0 {x} e ) | |
61 | 465 p← x | suc t | _ = t |
50 | 466 |
467 piso← : (x : Fin n ) → p→ ( p← x ) ≡ x | |
88 | 468 piso← x with perm ⟨$⟩ˡ (suc x) | inspect (_⟨$⟩ˡ_ perm ) (suc x) |
469 piso← x | zero | record { eq = e } = ⊥-elim ( sh2 perm p0=0 {x} e ) | |
470 piso← x | suc t | _ with perm ⟨$⟩ʳ (suc t) | inspect (_⟨$⟩ʳ_ perm ) (suc t) | |
471 piso← x | suc t | _ | zero | record { eq = e } = ⊥-elim ( sh1 perm p0=0 e ) | |
61 | 472 piso← x | suc t | record { eq = e0 } | suc t1 | record { eq = e1 } = begin |
473 t1 | |
474 ≡⟨ plem0 plem1 ⟩ | |
52 | 475 x |
61 | 476 ∎ where |
477 open ≡-Reasoning | |
478 plem0 : suc t1 ≡ suc x → t1 ≡ x | |
479 plem0 refl = refl | |
480 plem1 : suc t1 ≡ suc x | |
481 plem1 = begin | |
482 suc t1 | |
483 ≡⟨ sym e1 ⟩ | |
88 | 484 Inverse.to perm Π.⟨$⟩ suc t |
485 ≡⟨ cong (λ k → Inverse.to perm Π.⟨$⟩ k ) (sym e0) ⟩ | |
486 Inverse.to perm Π.⟨$⟩ ( Inverse.from perm Π.⟨$⟩ suc x ) | |
487 ≡⟨ inverseʳ perm ⟩ | |
61 | 488 suc x |
489 ∎ | |
50 | 490 |
491 piso→ : (x : Fin n ) → p← ( p→ x ) ≡ x | |
88 | 492 piso→ x with perm ⟨$⟩ʳ (suc x) | inspect (_⟨$⟩ʳ_ perm ) (suc x) |
493 piso→ x | zero | record { eq = e } = ⊥-elim ( sh1 perm p0=0 {x} e ) | |
494 piso→ x | suc t | _ with perm ⟨$⟩ˡ (suc t) | inspect (_⟨$⟩ˡ_ perm ) (suc t) | |
495 piso→ x | suc t | _ | zero | record { eq = e } = ⊥-elim ( sh2 perm p0=0 e ) | |
61 | 496 piso→ x | suc t | record { eq = e0 } | suc t1 | record { eq = e1 } = begin |
497 t1 | |
498 ≡⟨ plem2 plem3 ⟩ | |
53 | 499 x |
61 | 500 ∎ where |
501 plem2 : suc t1 ≡ suc x → t1 ≡ x | |
502 plem2 refl = refl | |
503 plem3 : suc t1 ≡ suc x | |
504 plem3 = begin | |
505 suc t1 | |
506 ≡⟨ sym e1 ⟩ | |
88 | 507 Inverse.from perm Π.⟨$⟩ suc t |
508 ≡⟨ cong (λ k → Inverse.from perm Π.⟨$⟩ k ) (sym e0 ) ⟩ | |
509 Inverse.from perm Π.⟨$⟩ ( Inverse.to perm Π.⟨$⟩ suc x ) | |
510 ≡⟨ inverseˡ perm ⟩ | |
61 | 511 suc x |
512 ∎ | |
57 | 513 |
88 | 514 shrink-iso : { n : ℕ } → {perm : Permutation n n} → shrink (pprep perm) refl =p= perm |
515 shrink-iso {n} {perm} = record { peq = λ q → refl } | |
516 | |
107 | 517 shrink-iso2 : { n : ℕ } → {perm : Permutation (suc n) (suc n)} |
108 | 518 → (p=0 : perm ⟨$⟩ˡ (# 0) ≡ # 0) → pprep (shrink perm p=0) =p= perm |
519 shrink-iso2 {n} {perm} p=0 = record { peq = s001 } where | |
109 | 520 s001 : (q : Fin (suc n)) → (pprep (shrink perm p=0) ⟨$⟩ʳ q) ≡ perm ⟨$⟩ʳ q |
521 s001 zero = begin | |
522 zero | |
523 ≡⟨ sym ( inverseʳ perm ) ⟩ | |
524 perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ zero ) | |
525 ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) p=0 ⟩ | |
526 perm ⟨$⟩ʳ zero | |
527 ∎ | |
528 s001 (suc q) with perm ⟨$⟩ʳ (suc q) | inspect (_⟨$⟩ʳ_ perm ) (suc q) | |
529 ... | zero | record {eq = e} = ⊥-elim (sh1 perm p=0 {q} e) | |
530 ... | suc t | e = refl | |
108 | 531 |
107 | 532 |
98 | 533 shrink-cong : { n : ℕ } → {x y : Permutation (suc n) (suc n)} |
534 → x =p= y | |
535 → (x=0 : x ⟨$⟩ˡ (# 0) ≡ # 0 ) → (y=0 : y ⟨$⟩ˡ (# 0) ≡ # 0 ) → shrink x x=0 =p= shrink y y=0 | |
99 | 536 shrink-cong {n} {x} {y} x=y x=0 y=0 = record { peq = p002 } where |
537 p002 : (q : Fin n) → (shrink x x=0 ⟨$⟩ʳ q) ≡ (shrink y y=0 ⟨$⟩ʳ q) | |
538 p002 q with x ⟨$⟩ʳ (suc q) | inspect (_⟨$⟩ʳ_ x ) (suc q) | y ⟨$⟩ʳ (suc q) | inspect (_⟨$⟩ʳ_ y ) (suc q) | |
539 p002 q | zero | record { eq = ex } | zero | ey = ⊥-elim ( sh1 x x=0 ex ) | |
540 p002 q | zero | record { eq = ex } | suc py | ey = ⊥-elim ( sh1 x x=0 ex ) | |
541 p002 q | suc px | ex | zero | record { eq = ey } = ⊥-elim ( sh1 y y=0 ey ) | |
542 p002 q | suc px | record { eq = ex } | suc py | record { eq = ey } = p003 ( begin | |
543 suc px | |
544 ≡⟨ sym ex ⟩ | |
545 x ⟨$⟩ʳ (suc q) | |
546 ≡⟨ peq x=y (suc q) ⟩ | |
547 y ⟨$⟩ʳ (suc q) | |
548 ≡⟨ ey ⟩ | |
549 suc py | |
550 ∎ ) where | |
551 p003 : suc px ≡ suc py → px ≡ py | |
552 p003 refl = refl | |
98 | 553 |
153 | 554 open import FLutil |
555 | |
57 | 556 FL→perm : {n : ℕ } → FL n → Permutation n n |
557 FL→perm f0 = pid | |
558 FL→perm (x :: fl) = pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x ) | |
559 | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
560 t40 = (# 2) :: ( (# 1) :: (( # 0 ) :: f0 )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
561 t4 = FL→perm ((# 2) :: t40 ) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
562 |
61 | 563 -- t1 = plist (shrink (pid {3} ∘ₚ (pins (n≤ 1))) refl) |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
564 t2 = plist ((pid {5} ) ∘ₚ transpose (# 2) (# 4)) ∷ plist (pid {5} ∘ₚ reverse ) ∷ [] |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
565 t3 = plist (FL→perm t40) -- ∷ plist (pprep (FL→perm t40)) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
566 -- ∷ plist ( pprep (FL→perm t40) ∘ₚ pins ( n≤ 0 {3} )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
567 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 1 {2} )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
568 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 2 {1} )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
569 -- ∷ plist ( pprep (FL→perm t40 )∘ₚ pins ( n≤ 3 {0} )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
570 ∷ plist ( FL→perm ((# 0) :: t40)) -- (0 ∷ 1 ∷ 2 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
571 ∷ plist ( FL→perm ((# 1) :: t40)) -- (0 ∷ 2 ∷ 1 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
572 ∷ plist ( FL→perm ((# 2) :: t40)) -- (1 ∷ 0 ∷ 2 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
573 ∷ plist ( FL→perm ((# 3) :: t40)) -- (2 ∷ 0 ∷ 1 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
574 -- ∷ plist ( FL→perm ((# 3) :: ((# 2) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (1 ∷ 2 ∷ 0 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
575 -- ∷ plist ( FL→perm ((# 3) :: ((# 2) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) -- (2 ∷ 1 ∷ 0 ∷ []) ∷ |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
576 -- ∷ plist ( (flip (FL→perm ((# 3) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))))) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
577 -- ∷ plist ( (flip (FL→perm ((# 3) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) ∘ₚ (FL→perm ((# 3) :: (((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) )))) )) |
57 | 578 ∷ [] |
50 | 579 |
58 | 580 |
251 | 581 -- FL→plist-iso : {n : ℕ} → (f : FL n ) → plist→FL (FL→plist f ) ≡ f |
582 -- FL→plist-inject : {n : ℕ} → (f g : FL n ) → FL→plist f ≡ FL→plist g → f ≡ g | |
583 | |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
584 perm→FL : {n : ℕ } → Permutation n n → FL n |
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
585 perm→FL {zero} perm = f0 |
98 | 586 perm→FL {suc n} perm = (perm ⟨$⟩ʳ (# 0)) :: perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ) |
251 | 587 |
588 ---FL→perm : {n : ℕ } → FL n → Permutation n n | |
589 ---FL→perm x = plist→perm ( FL→plis x) | |
590 -- perm→FL : {n : ℕ } → Permutation n n → FL n | |
591 -- perm→FL p = plist→FL (plist p) | |
592 | |
593 -- pcong-pF : {n : ℕ } → {x y : Permutation n n} → x =p= y → perm→FL x ≡ perm→FL y | |
594 -- pcong-pF {n} {x} {y} x=y = FL→plist-inject (subst ... (pleq← eq)) (perm→FL x) (perm→FL y) | |
595 | |
596 -- FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl | |
597 -- FL→iso = | |
598 -- pcong-Fp : {n : ℕ } → {x y : FL n} → x ≡ y → FL→perm x =p= FL→perm y | |
599 -- FL←iso : {n : ℕ } → (perm : Permutation n n ) → FL→perm ( perm→FL perm ) =p= perm | |
98 | 600 |
130 | 601 _p<_ : {n : ℕ } ( x y : Permutation n n ) → Set |
602 x p< y = perm→FL x f< perm→FL y | |
603 | |
98 | 604 pcong-pF : {n : ℕ } → {x y : Permutation n n} → x =p= y → perm→FL x ≡ perm→FL y |
99 | 605 pcong-pF {zero} eq = refl |
100 | 606 pcong-pF {suc n} {x} {y} eq = cong₂ (λ j k → j :: k ) ( peq eq (# 0)) (pcong-pF (shrink-cong (presp eq p001 ) (p=0 x) (p=0 y))) where |
607 p002 : x ⟨$⟩ʳ (# 0) ≡ y ⟨$⟩ʳ (# 0) | |
608 p002 = peq eq (# 0) | |
609 p001 : flip (pins (toℕ≤pred[n] (x ⟨$⟩ʳ (# 0)))) =p= flip (pins (toℕ≤pred[n] (y ⟨$⟩ʳ (# 0)))) | |
610 p001 = subst ( λ k → flip (pins (toℕ≤pred[n] (x ⟨$⟩ʳ (# 0)))) =p= flip (pins (toℕ≤pred[n] k ))) p002 prefl | |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
611 |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
612 -- t5 = plist t4 ∷ plist ( t4 ∘ₚ flip (pins ( n≤ 3 ) )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
613 t5 = plist (t4) ∷ plist (flip t4) |
74 | 614 ∷ ( toℕ (t4 ⟨$⟩ˡ fromℕ< a<sa) ∷ [] ) |
61 | 615 ∷ ( toℕ (t4 ⟨$⟩ʳ (# 0)) ∷ [] ) |
60
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
616 -- ∷ plist ( t4 ∘ₚ flip (pins ( n≤ 1 ) )) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
617 ∷ plist (remove (# 0) t4 ) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
618 ∷ plist ( FL→perm t40 ) |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
619 ∷ [] |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
620 |
48926e810f5f
perm→FL done. pprep fix.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
59
diff
changeset
|
621 t6 = perm→FL t4 |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
622 |
98 | 623 FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl |
624 FL→iso f0 = refl | |
100 | 625 FL→iso {suc n} (x :: fl) = cong₂ ( λ j k → j :: k ) f001 f002 where |
98 | 626 perm = pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x ) |
627 f001 : perm ⟨$⟩ʳ (# 0) ≡ x | |
100 | 628 f001 = begin |
629 (pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x )) ⟨$⟩ʳ (# 0) | |
101 | 630 ≡⟨⟩ |
631 pins ( toℕ≤pred[n] x ) ⟨$⟩ʳ (# 0) | |
632 ≡⟨ px=x x ⟩ | |
100 | 633 x |
634 ∎ | |
98 | 635 x=0 : (perm ∘ₚ flip (pins (toℕ≤pred[n] x))) ⟨$⟩ˡ (# 0) ≡ # 0 |
100 | 636 x=0 = subst ( λ k → (perm ∘ₚ flip (pins (toℕ≤pred[n] k))) ⟨$⟩ˡ (# 0) ≡ # 0 ) f001 (p=0 perm) |
98 | 637 x=0' : (pprep (FL→perm fl) ∘ₚ pid) ⟨$⟩ˡ (# 0) ≡ # 0 |
100 | 638 x=0' = refl |
103 | 639 f003 : (q : Fin (suc n)) → |
640 ((perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ⟨$⟩ʳ q) ≡ | |
641 ((perm ∘ₚ flip (pins (toℕ≤pred[n] x))) ⟨$⟩ʳ q) | |
642 f003 q = cong (λ k → (perm ∘ₚ flip (pins (toℕ≤pred[n] k))) ⟨$⟩ʳ q ) f001 | |
98 | 643 f002 : perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ) ≡ fl |
644 f002 = begin | |
645 perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ) | |
103 | 646 ≡⟨ pcong-pF (shrink-cong {n} {perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))} {perm ∘ₚ flip (pins (toℕ≤pred[n] x))} record {peq = f003 } (p=0 perm) x=0) ⟩ |
98 | 647 perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] x))) x=0 ) |
648 ≡⟨⟩ | |
649 perm→FL (shrink ((pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x )) ∘ₚ flip (pins (toℕ≤pred[n] x))) x=0 ) | |
103 | 650 ≡⟨ pcong-pF (shrink-cong (passoc (pprep (FL→perm fl)) (pins ( toℕ≤pred[n] x )) (flip (pins (toℕ≤pred[n] x))) ) x=0 x=0) ⟩ |
98 | 651 perm→FL (shrink (pprep (FL→perm fl) ∘ₚ (pins ( toℕ≤pred[n] x ) ∘ₚ flip (pins (toℕ≤pred[n] x)))) x=0 ) |
103 | 652 ≡⟨ pcong-pF (shrink-cong {n} {pprep (FL→perm fl) ∘ₚ (pins ( toℕ≤pred[n] x ) ∘ₚ flip (pins (toℕ≤pred[n] x)))} {pprep (FL→perm fl) ∘ₚ pid} |
653 ( presp {suc n} {pprep (FL→perm fl) } {_} {(pins ( toℕ≤pred[n] x ) ∘ₚ flip (pins (toℕ≤pred[n] x)))} {pid} prefl | |
654 record { peq = λ q → inverseˡ (pins ( toℕ≤pred[n] x )) } ) x=0 x=0') ⟩ | |
98 | 655 perm→FL (shrink (pprep (FL→perm fl) ∘ₚ pid) x=0' ) |
103 | 656 ≡⟨ pcong-pF (shrink-cong {n} {pprep (FL→perm fl) ∘ₚ pid} {pprep (FL→perm fl)} record {peq = λ q → refl } x=0' x=0') ⟩ -- prefl won't work |
98 | 657 perm→FL (shrink (pprep (FL→perm fl)) x=0' ) |
658 ≡⟨ pcong-pF shrink-iso ⟩ | |
659 perm→FL ( FL→perm fl ) | |
660 ≡⟨ FL→iso fl ⟩ | |
661 fl | |
662 ∎ | |
663 | |
104 | 664 pcong-Fp : {n : ℕ } → {x y : FL n} → x ≡ y → FL→perm x =p= FL→perm y |
665 pcong-Fp {n} {x} {x} refl = prefl | |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
666 |
104 | 667 FL←iso : {n : ℕ } → (perm : Permutation n n ) → FL→perm ( perm→FL perm ) =p= perm |
668 FL←iso {0} perm = record { peq = λ () } | |
106 | 669 FL←iso {suc n} perm = record { peq = λ q → ( begin |
670 FL→perm ( perm→FL perm ) ⟨$⟩ʳ q | |
671 ≡⟨⟩ | |
107 | 672 (pprep (FL→perm (perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ) ) ⟨$⟩ʳ q |
110 | 673 ≡⟨ peq (presp {suc n} {_} {_} {pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)))} (pprep-cong {n} {FL→perm (perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ))} (FL←iso _ ) ) prefl ) q ⟩ |
107 | 674 (pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q |
110 | 675 ≡⟨ peq (presp {suc n} {pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm))} {perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))} {pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )} (shrink-iso2 (p=0 perm)) prefl) q ⟩ |
107 | 676 ((perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q |
110 | 677 ≡⟨ peq (presp {suc n} {perm} {_} {flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)))} {pid} prefl record { peq = λ q → inverseʳ (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)))) }) q ⟩ |
107 | 678 ( perm ∘ₚ pid ) ⟨$⟩ʳ q |
110 | 679 ≡⟨⟩ |
104 | 680 perm ⟨$⟩ʳ q |
107 | 681 ∎ ) } |
49
8b3b95362ca9
remove (fromℕ≤ a<sa) perm is no good
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
48
diff
changeset
|
682 |
111 | 683 FL-inject : {n : ℕ } → {g h : Permutation n n } → perm→FL g ≡ perm→FL h → g =p= h |
684 FL-inject {n} {g} {h} g=h = record { peq = λ q → ( begin | |
685 g ⟨$⟩ʳ q | |
686 ≡⟨ peq (psym (FL←iso g )) q ⟩ | |
687 ( FL→perm (perm→FL g) ) ⟨$⟩ʳ q | |
688 ≡⟨ cong ( λ k → FL→perm k ⟨$⟩ʳ q ) g=h ⟩ | |
689 ( FL→perm (perm→FL h) ) ⟨$⟩ʳ q | |
690 ≡⟨ peq (FL←iso h) q ⟩ | |
691 h ⟨$⟩ʳ q | |
692 ∎ ) } | |
693 | |
184 | 694 FLpid : {n : ℕ} → (x : Permutation n n) → perm→FL x ≡ FL0 → FL→perm FL0 =p= pid → x =p= pid |
695 FLpid x eq p0id = ptrans pf2 (ptrans pf0 p0id ) where | |
696 pf2 : x =p= FL→perm (perm→FL x) | |
697 pf2 = psym (FL←iso x) | |
698 pf0 : FL→perm (perm→FL x) =p= FL→perm FL0 | |
699 pf0 = pcong-Fp eq | |
700 | |
186 | 701 pFL0 : {n : ℕ } → FL0 {n} ≡ perm→FL pid |
702 pFL0 {zero} = refl | |
251 | 703 pFL0 {suc n} = cong (λ k → zero :: k ) pFL0 |