Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate ordinal-definable.agda @ 94:4659a815b70d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Jun 2019 13:18:10 +0900 |
parents | d382a7902f5e |
children | f3da2c87cee0 |
rev | line source |
---|---|
16 | 1 open import Level |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
2 module ordinal-definable where |
3 | 3 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
4 open import zf |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
5 open import ordinal |
3 | 6 |
23 | 7 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
3 | 8 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
9 open import Relation.Binary.PropositionalEquality |
3 | 10 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
11 open import Data.Nat.Properties |
6 | 12 open import Data.Empty |
13 open import Relation.Nullary | |
14 | |
15 open import Relation.Binary | |
16 open import Relation.Binary.Core | |
17 | |
27 | 18 -- Ordinal Definable Set |
11 | 19 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
20 record OD {n : Level} : Set (suc n) where |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
21 field |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
22 def : (x : Ordinal {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
23 |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
24 open OD |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
25 open import Data.Unit |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
26 |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
27 open Ordinal |
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
28 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
29 postulate |
45
33860eb44e47
od∅' {n} = ord→od (o∅ {n})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
44
diff
changeset
|
30 od→ord : {n : Level} → OD {n} → Ordinal {n} |
36 | 31 ord→od : {n : Level} → Ordinal {n} → OD {n} |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
32 |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
33 _∋_ : { n : Level } → ( a x : OD {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
34 _∋_ {n} a x = def a ( od→ord x ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
35 |
90 | 36 _c<_ : { n : Level } → ( x a : OD {n} ) → Set n |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
37 x c< a = a ∋ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
38 |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
39 record _==_ {n : Level} ( a b : OD {n} ) : Set n where |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
40 field |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
41 eq→ : ∀ { x : Ordinal {n} } → def a x → def b x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
42 eq← : ∀ { x : Ordinal {n} } → def b x → def a x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
43 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
44 id : {n : Level} {A : Set n} → A → A |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
45 id x = x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
46 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
47 eq-refl : {n : Level} { x : OD {n} } → x == x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
48 eq-refl {n} {x} = record { eq→ = id ; eq← = id } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
49 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
50 open _==_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
51 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
52 eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
53 eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
54 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
55 eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
56 eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
57 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
58 _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
59 a c≤ b = (a ≡ b) ∨ ( b ∋ a ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
60 |
40 | 61 od∅ : {n : Level} → OD {n} |
62 od∅ {n} = record { def = λ _ → Lift n ⊥ } | |
63 | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
64 postulate |
36 | 65 c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y |
66 o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
67 oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
68 diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
69 sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
70 sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → ψ x c< sup-od ψ |
46 | 71 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
72 ∅1 : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅ {n} ) |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
73 ∅1 {n} x (lift ()) |
28 | 74 |
37 | 75 ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n} |
81 | 76 ∅3 {n} {x} = TransFinite {n} c2 c3 x where |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
77 c0 : Nat → Ordinal {n} → Set n |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
78 c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n} |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
79 c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
80 c2 Zero not = refl |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
81 c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
82 ... | t with t (case1 ≤-refl ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
83 c2 (Suc lx) not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
84 c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ }) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
85 c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
86 ... | t with t (case2 Φ< ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
87 c3 lx (Φ .lx) d not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
88 c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } ) |
34 | 89 ... | t with t (case2 (s< s<refl ) ) |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
90 c3 lx (OSuc .lx x₁) d not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
91 |
36 | 92 def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x |
93 def-subst df refl refl = df | |
94 | |
69 | 95 transitive : {n : Level } { z y x : OD {suc n} } → z ∋ y → y ∋ x → z ∋ x |
96 transitive {n} {z} {y} {x} z∋y x∋y with ordtrans ( c<→o< {suc n} {x} {y} x∋y ) ( c<→o< {suc n} {y} {z} z∋y ) | |
36 | 97 ... | t = lemma0 (lemma t) where |
98 lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) | |
99 lemma xo<z = o<→c< xo<z | |
100 lemma0 : def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) → def z (od→ord x) | |
69 | 101 lemma0 dz = def-subst {suc n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso) |
36 | 102 |
41 | 103 record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where |
104 field | |
105 mino : Ordinal {n} | |
106 min<x : mino o< x | |
107 | |
57 | 108 ∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x |
109 ∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl) | |
110 ∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ< | |
111 ∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n) | |
37 | 112 |
46 | 113 ord-iso : {n : Level} {y : Ordinal {n} } → record { lv = lv (od→ord (ord→od y)) ; ord = ord (od→ord (ord→od y)) } ≡ record { lv = lv y ; ord = ord y } |
114 ord-iso = cong ( λ k → record { lv = lv k ; ord = ord k } ) diso | |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
115 |
51 | 116 -- avoiding lv != Zero error |
117 orefl : {n : Level} → { x : OD {n} } → { y : Ordinal {n} } → od→ord x ≡ y → od→ord x ≡ y | |
118 orefl refl = refl | |
119 | |
120 ==-iso : {n : Level} → { x y : OD {n} } → ord→od (od→ord x) == ord→od (od→ord y) → x == y | |
121 ==-iso {n} {x} {y} eq = record { | |
122 eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ; | |
123 eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) } | |
124 where | |
125 lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z | |
126 lemma {x} {z} d = def-subst d oiso refl | |
127 | |
57 | 128 =-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y) |
129 =-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso) | |
130 | |
51 | 131 ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y |
132 ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where | |
133 lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy) | |
134 lemma ox ox refl = eq-refl | |
135 | |
136 o≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ord→od x == ord→od y | |
137 o≡→== {n} {x} {.x} refl = eq-refl | |
138 | |
139 >→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) | |
140 >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x | |
141 | |
142 c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x | |
143 c≤-refl x = case1 refl | |
144 | |
54 | 145 o<→o> : {n : Level} → { x y : OD {n} } → (x == y) → (od→ord x ) o< ( od→ord y) → ⊥ |
52 | 146 o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with |
147 yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case1 lt )) oiso diso ) | |
148 ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) | |
149 ... | () | |
150 o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with | |
151 yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case2 lt )) oiso diso ) | |
152 ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) | |
153 ... | () | |
154 | |
79 | 155 ==→o≡ : {n : Level} → { x y : Ordinal {suc n} } → ord→od x == ord→od y → x ≡ y |
156 ==→o≡ {n} {x} {y} eq with trio< {n} x y | |
157 ==→o≡ {n} {x} {y} eq | tri< a ¬b ¬c = ⊥-elim ( o<→o> eq (o<-subst a (sym ord-iso) (sym ord-iso ))) | |
158 ==→o≡ {n} {x} {y} eq | tri≈ ¬a b ¬c = b | |
159 ==→o≡ {n} {x} {y} eq | tri> ¬a ¬b c = ⊥-elim ( o<→o> (eq-sym eq) (o<-subst c (sym ord-iso) (sym ord-iso ))) | |
160 | |
90 | 161 ≡-def : {n : Level} → { x : Ordinal {suc n} } → x ≡ od→ord (record { def = λ z → z o< x } ) |
162 ≡-def {n} {x} = ==→o≡ {n} (subst (λ k → ord→od x == k ) (sym oiso) lemma ) where | |
163 lemma : ord→od x == record { def = λ z → z o< x } | |
164 eq→ lemma {w} z = subst₂ (λ k j → k o< j ) diso diso t where | |
165 t : (od→ord ( ord→od w)) o< (od→ord (ord→od x)) | |
166 t = c<→o< {suc n} {ord→od w} {ord→od x} (def-subst {suc n} {_} {_} {ord→od x} {_} z refl (sym diso)) | |
167 eq← lemma {w} z = def-subst {suc n} {_} {_} {ord→od x} {w} ( o<→c< {suc n} {_} {_} z ) refl diso | |
168 | |
169 od≡-def : {n : Level} → { x : Ordinal {suc n} } → ord→od x ≡ record { def = λ z → z o< x } | |
170 od≡-def {n} {x} = subst (λ k → ord→od x ≡ k ) oiso (cong ( λ k → ord→od k ) (≡-def {n} {x} )) | |
171 | |
91 | 172 ∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a |
173 ∋→o< {n} {a} {x} lt = t where | |
174 t : (od→ord x) o< (od→ord a) | |
175 t = c<→o< {suc n} {x} {a} lt | |
176 | |
177 o<∋→ : {n : Level} → { a x : OD {suc n} } → od→ord x o< od→ord a → a ∋ x | |
178 o<∋→ {n} {a} {x} lt = subst₂ (λ k j → def k j ) oiso diso t where | |
179 t : def (ord→od (od→ord a)) (od→ord (ord→od (od→ord x))) | |
180 t = o<→c< {suc n} {od→ord x} {od→ord a} lt | |
181 | |
80 | 182 o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} |
183 o∅≡od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (od∅ {suc n} )) | |
184 o∅≡od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where | |
185 lemma : o∅ {suc n } o< (od→ord (od∅ {suc n} )) → ⊥ | |
186 lemma lt with def-subst (o<→c< lt) oiso refl | |
187 lemma lt | lift () | |
188 o∅≡od∅ {n} | tri≈ ¬a b ¬c = trans (cong (λ k → ord→od k ) b ) oiso | |
189 o∅≡od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) | |
190 | |
51 | 191 o<→¬== : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (x == y ) |
52 | 192 o<→¬== {n} {x} {y} lt eq = o<→o> eq lt |
51 | 193 |
194 o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) | |
81 | 195 o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where |
51 | 196 |
197 o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y | |
198 o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (od→ord x) (od→ord y) (orefl oeq ) (c<→o< lt) | |
199 | |
200 tri-c< : {n : Level} → Trichotomous _==_ (_c<_ {suc n}) | |
201 tri-c< {n} x y with trio< {n} (od→ord x) (od→ord y) | |
202 tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst (o<→c< a) oiso diso) (o<→¬== a) ( o<→¬c> a ) | |
203 tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) (ord→== b) (o≡→¬c< (sym b)) | |
204 tri-c< {n} x y | tri> ¬a ¬b c = tri> ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst (o<→c< c) oiso diso) | |
205 | |
54 | 206 c<> : {n : Level } { x y : OD {suc n}} → x c< y → y c< x → ⊥ |
207 c<> {n} {x} {y} x<y y<x with tri-c< x y | |
208 c<> {n} {x} {y} x<y y<x | tri< a ¬b ¬c = ¬c y<x | |
209 c<> {n} {x} {y} x<y y<x | tri≈ ¬a b ¬c = o<→o> b ( c<→o< x<y ) | |
210 c<> {n} {x} {y} x<y y<x | tri> ¬a ¬b c = ¬a x<y | |
211 | |
60 | 212 ∅< : {n : Level} → { x y : OD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) |
213 ∅< {n} {x} {y} d eq with eq→ eq d | |
214 ∅< {n} {x} {y} d eq | lift () | |
57 | 215 |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
216 ∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox |
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
217 ∅6 {n} {x} x∋x = c<> {n} {x} {x} x∋x x∋x |
51 | 218 |
76 | 219 def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x |
220 def-iso refl t = t | |
221 | |
53 | 222 is-∋ : {n : Level} → ( x y : OD {suc n} ) → Dec ( x ∋ y ) |
223 is-∋ {n} x y with tri-c< x y | |
224 is-∋ {n} x y | tri< a ¬b ¬c = no ¬c | |
225 is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c | |
226 is-∋ {n} x y | tri> ¬a ¬b c = yes c | |
227 | |
57 | 228 is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) |
229 is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl | |
230 is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) | |
231 is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) | |
232 | |
45
33860eb44e47
od∅' {n} = ord→od (o∅ {n})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
44
diff
changeset
|
233 open _∧_ |
33860eb44e47
od∅' {n} = ord→od (o∅ {n})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
44
diff
changeset
|
234 |
66 | 235 ¬∅=→∅∈ : {n : Level} → { x : OD {suc n} } → ¬ ( x == od∅ {suc n} ) → x ∋ od∅ {suc n} |
236 ¬∅=→∅∈ {n} {x} ne = def-subst (lemma (od→ord x) (subst (λ k → ¬ (k == od∅ {suc n} )) (sym oiso) ne )) oiso refl where | |
237 lemma : (ox : Ordinal {suc n}) → ¬ (ord→od ox == od∅ {suc n} ) → ord→od ox ∋ od∅ {suc n} | |
238 lemma ox ne with is-o∅ ox | |
239 lemma ox ne | yes refl with ne ( ord→== lemma1 ) where | |
240 lemma1 : od→ord (ord→od o∅) ≡ od→ord od∅ | |
80 | 241 lemma1 = cong ( λ k → od→ord k ) o∅≡od∅ |
66 | 242 lemma o∅ ne | yes refl | () |
80 | 243 lemma ox ne | no ¬p = subst ( λ k → def (ord→od ox) (od→ord k) ) o∅≡od∅ (o<→c< (∅5 ¬p)) |
69 | 244 |
79 | 245 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) |
94 | 246 -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) |
59
d13d1351a1fa
lemma = cong₂ (λ x not → minimul x not ) oiso { }6
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
58
diff
changeset
|
247 |
94 | 248 Def : OD {suc n} → OD {suc n} |
249 Def X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → def X x → def (ord→od y) x } | |
89 | 250 |
251 | |
54 | 252 OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} |
40 | 253 OD→ZF {n} = record { |
54 | 254 ZFSet = OD {suc n} |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
255 ; _∋_ = _∋_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
256 ; _≈_ = _==_ |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
257 ; ∅ = od∅ |
28 | 258 ; _,_ = _,_ |
259 ; Union = Union | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
260 ; Power = Power |
28 | 261 ; Select = Select |
262 ; Replace = Replace | |
81 | 263 ; infinite = ord→od ( record { lv = Suc Zero ; ord = Φ 1 } ) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
264 ; isZF = isZF |
28 | 265 } where |
54 | 266 Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
267 Replace X ψ = sup-od ψ |
54 | 268 Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n} |
269 Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } | |
270 _,_ : OD {suc n} → OD {suc n} → OD {suc n} | |
84 | 271 x , y = record { def = λ z → z o< (omax (od→ord x) (od→ord y)) } |
54 | 272 Union : OD {suc n} → OD {suc n} |
71
d088eb66564e
add osuc ( next larger element of Ordinal )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
70
diff
changeset
|
273 Union U = record { def = λ y → osuc y o< (od→ord U) } |
77 | 274 -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) |
54 | 275 Power : OD {suc n} → OD {suc n} |
94 | 276 Power X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → def (ord→od y) x → def X x } |
54 | 277 ZFSet = OD {suc n} |
278 _∈_ : ( A B : ZFSet ) → Set (suc n) | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
279 A ∈ B = B ∋ A |
54 | 280 _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
281 _⊆_ A B {x} = A ∋ x → B ∋ x |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
282 _∩_ : ( A B : ZFSet ) → ZFSet |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
283 A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
284 _∪_ : ( A B : ZFSet ) → ZFSet |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
285 A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
286 infixr 200 _∈_ |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
287 infixr 230 _∩_ _∪_ |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
288 infixr 220 _⊆_ |
81 | 289 isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (ord→od ( record { lv = Suc Zero ; ord = Φ 1} )) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
290 isZF = record { |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
291 isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
292 ; pair = pair |
72 | 293 ; union-u = union-u |
294 ; union→ = union→ | |
295 ; union← = union← | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
296 ; empty = empty |
76 | 297 ; power→ = power→ |
298 ; power← = power← | |
299 ; extensionality = extensionality | |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
300 ; minimul = minimul |
51 | 301 ; regularity = regularity |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
302 ; infinity∅ = infinity∅ |
93 | 303 ; infinity = λ _ → infinity |
55
9c0a5e28a572
regurality elimination case
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
54
diff
changeset
|
304 ; selection = λ {ψ} {X} {y} → selection {ψ} {X} {y} |
93 | 305 ; replacement = replacement |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
306 } where |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
307 open _∧_ |
41 | 308 open Minimumo |
54 | 309 pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) |
87 | 310 proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) |
311 proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) | |
54 | 312 empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
313 empty x () |
94 | 314 --- Power X = record { def = λ t → ∀ (x : Ordinal {suc n} ) → def (ord→od t) x → def X x } |
76 | 315 power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x |
94 | 316 power→ A t P∋t {x} t∋x = ? |
77 | 317 power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t |
94 | 318 power← A t t→A z _ = ? |
70 | 319 union-u : (X z : OD {suc n}) → Union X ∋ z → OD {suc n} |
72 | 320 union-u X z U>z = ord→od ( osuc ( od→ord z ) ) |
321 union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → union-u X z U>z ∋ z | |
322 union-lemma-u {X} {z} U>z = lemma <-osuc where | |
323 lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz | |
324 lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} (o<→c< lt) refl diso | |
73 | 325 union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z |
72 | 326 union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y )) |
74
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
327 union→ X y u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) |
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
328 union→ X y u xx | tri< a ¬b ¬c | () |
73 | 329 union→ X y u xx | tri≈ ¬a b ¬c = lemma b (c<→o< (proj1 xx )) where |
330 lemma : {oX ou ooy : Ordinal {suc n}} → ou ≡ ooy → ou o< oX → ooy o< oX | |
331 lemma refl lt = lt | |
332 union→ X y u xx | tri> ¬a ¬b c = ordtrans {suc n} {osuc ( od→ord y )} {od→ord u} {od→ord X} c ( c<→o< (proj1 xx )) | |
72 | 333 union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u X z X∋z) ∧ (union-u X z X∋z ∋ z ) |
73 | 334 union← X z X∋z = record { proj1 = def-subst {suc n} (o<→c< X∋z) oiso refl ; proj2 = union-lemma-u X∋z } |
54 | 335 ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y |
336 ψiso {ψ} t refl = t | |
337 selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) | |
338 selection {ψ} {X} {y} = record { | |
339 proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } | |
340 ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } | |
341 } | |
93 | 342 replacement : {ψ : OD → OD} (X x : OD) → Replace X ψ ∋ ψ x |
343 replacement {ψ} X x = sup-c< ψ {x} | |
60 | 344 ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) |
345 ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq | |
54 | 346 minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} |
68 | 347 minimul x not = od∅ |
57 | 348 regularity : (x : OD) (not : ¬ (x == od∅)) → |
349 (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) | |
66 | 350 proj1 (regularity x not ) = ¬∅=→∅∈ not |
351 proj2 (regularity x not ) = record { eq→ = reg ; eq← = λ () } where | |
352 reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y | |
353 reg {y} t with proj1 t | |
354 ... | x∈∅ = x∈∅ | |
76 | 355 extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B |
356 eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d | |
357 eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d | |
89 | 358 xx-union : {x : OD {suc n}} → (x , x) ≡ record { def = λ z → z o< osuc (od→ord x) } |
359 xx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) (omxx (od→ord x)) | |
360 xxx-union : {x : OD {suc n}} → (x , (x , x)) ≡ record { def = λ z → z o< osuc (osuc (od→ord x))} | |
361 xxx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) lemma where | |
91 | 362 lemma1 : {x : OD {suc n}} → od→ord x o< od→ord (x , x) |
363 lemma1 {x} = c<→o< ( proj1 (pair x x ) ) | |
364 lemma2 : {x : OD {suc n}} → od→ord (x , x) ≡ osuc (od→ord x) | |
365 lemma2 = trans ( cong ( λ k → od→ord k ) xx-union ) (sym ≡-def) | |
89 | 366 lemma : {x : OD {suc n}} → omax (od→ord x) (od→ord (x , x)) ≡ osuc (osuc (od→ord x)) |
91 | 367 lemma {x} = trans ( sym ( omax< (od→ord x) (od→ord (x , x)) lemma1 ) ) ( cong ( λ k → osuc k ) lemma2 ) |
90 | 368 uxxx-union : {x : OD {suc n}} → Union (x , (x , x)) ≡ record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } |
369 uxxx-union {x} = cong ( λ k → record { def = λ z → osuc z o< k } ) lemma where | |
370 lemma : od→ord (x , (x , x)) ≡ osuc (osuc (od→ord x)) | |
91 | 371 lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) (sym ≡-def ) |
372 uxxx-2 : {x : OD {suc n}} → record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } == record { def = λ z → z o< osuc (od→ord x) } | |
373 eq→ ( uxxx-2 {x} ) {m} lt = proj1 (osuc2 m (od→ord x)) lt | |
374 eq← ( uxxx-2 {x} ) {m} lt = proj2 (osuc2 m (od→ord x)) lt | |
375 uxxx-ord : {x : OD {suc n}} → od→ord (Union (x , (x , x))) ≡ osuc (od→ord x) | |
376 uxxx-ord {x} = trans (cong (λ k → od→ord k ) uxxx-union) (==→o≡ (subst₂ (λ j k → j == k ) (sym oiso) (sym od≡-def ) uxxx-2 )) | |
377 omega = record { lv = Suc Zero ; ord = Φ 1 } | |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
378 infinite : OD {suc n} |
91 | 379 infinite = ord→od ( omega ) |
380 infinity∅ : ord→od ( omega ) ∋ od∅ {suc n} | |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
381 infinity∅ = def-subst {suc n} {_} {od→ord (ord→od o∅)} {infinite} {od→ord od∅} |
80 | 382 (o<→c< ( case1 (s≤s z≤n ))) refl (cong (λ k → od→ord k) o∅≡od∅ ) |
91 | 383 infinite∋x : (x : OD) → infinite ∋ x → od→ord x o< omega |
384 infinite∋x x lt = subst (λ k → od→ord x o< k ) diso t where | |
385 t : od→ord x o< od→ord (ord→od (omega)) | |
386 t = ∋→o< {n} {infinite} {x} lt | |
387 infinite∋uxxx : (x : OD) → osuc (od→ord x) o< omega → infinite ∋ Union (x , (x , x )) | |
388 infinite∋uxxx x lt = o<∋→ t where | |
389 t : od→ord (Union (x , (x , x))) o< od→ord (ord→od (omega)) | |
390 t = subst (λ k → od→ord (Union (x , (x , x))) o< k ) (sym diso ) ( subst ( λ k → k o< omega ) ( sym (uxxx-ord {x} ) ) lt ) | |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
391 infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) |
91 | 392 infinity x lt = infinite∋uxxx x ( lemma (od→ord x) (infinite∋x x lt )) where |
393 lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega | |
394 lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) | |
395 lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n) | |
396 lemma record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } (case1 (s≤s ())) | |
397 lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ())) | |
398 lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2 | |
399 lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl | |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
400 |