annotate yoneda.agda @ 198:1edba4226474

comment
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 31 Aug 2013 01:51:38 +0900
parents ec50ff189f62
children 0ce7795fa46b
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
189
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
1 ----
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
2 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
3 -- A → Sets^A^op : Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
4 -- Contravariant Functor h_a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
5 -- Nat(h_a,F)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
6 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
7 ----
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
8
178
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Category -- https://github.com/konn/category-agda
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Level
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Category.Sets
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 module yoneda { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 open import HomReasoning
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 open import cat-utility
179
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 178
diff changeset
16 open import Relation.Binary.Core
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 178
diff changeset
17 open import Relation.Binary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 178
diff changeset
18
178
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 -- Contravariant Functor : op A → Sets ( Obj of Sets^{A^op} )
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
21 -- Obj and Hom of Sets^A^op
181
b58453d90db6 contravariant functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 180
diff changeset
22
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
23 open Functor
183
ea6fc610b480 Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 182
diff changeset
24
184
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
25 YObj = Functor (Category.op A) (Sets {c₂})
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
26 YHom = λ (f : YObj ) → λ (g : YObj ) → NTrans (Category.op A) Sets f g
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
27
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
28 open NTrans
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
29 Yid : {a : YObj} → YHom a a
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
30 Yid {a} = record { TMap = \a -> \x -> x ; isNTrans = isNTrans1 {a} } where
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
31 isNTrans1 : {a : YObj } → IsNTrans (Category.op A) (Sets {c₂}) a a (\a -> \x -> x )
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
32 isNTrans1 {a} = record { commute = refl }
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
33
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
34 _+_ : {a b c : YObj} → YHom b c → YHom a b → YHom a c
185
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
35 _+_{a} {b} {c} f g = record { TMap = λ x → Sets [ TMap f x o TMap g x ] ; isNTrans = isNTrans1 } where
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
36 commute1 : (a b c : YObj ) (f : YHom b c) (g : YHom a b )
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
37 (a₁ b₁ : Obj (Category.op A)) (h : Hom (Category.op A) a₁ b₁) →
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
38 Sets [ Sets [ FMap c h o Sets [ TMap f a₁ o TMap g a₁ ] ] ≈
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
39 Sets [ Sets [ TMap f b₁ o TMap g b₁ ] o FMap a h ] ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
40 commute1 a b c f g a₁ b₁ h = let open ≈-Reasoning (Sets {c₂})in begin
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
41 Sets [ FMap c h o Sets [ TMap f a₁ o TMap g a₁ ] ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
42 ≈⟨ assoc {_} {_} {_} {_} {FMap c h } {TMap f a₁} {TMap g a₁} ⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
43 Sets [ Sets [ FMap c h o TMap f a₁ ] o TMap g a₁ ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
44 ≈⟨ car (nat f) ⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
45 Sets [ Sets [ TMap f b₁ o FMap b h ] o TMap g a₁ ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
46 ≈↑⟨ assoc {_} {_} {_} {_} { TMap f b₁} {FMap b h } {TMap g a₁}⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
47 Sets [ TMap f b₁ o Sets [ FMap b h o TMap g a₁ ] ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
48 ≈⟨ cdr {_} {_} {_} {_} {_} { TMap f b₁} (nat g) ⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
49 Sets [ TMap f b₁ o Sets [ TMap g b₁ o FMap a h ] ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
50 ≈↑⟨ assoc {_} {_} {_} {_} {TMap f b₁} {TMap g b₁} { FMap a h} ⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
51 Sets [ Sets [ TMap f b₁ o TMap g b₁ ] o FMap a h ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
52
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
53 isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) a c (λ x → Sets [ TMap f x o TMap g x ])
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
54 isNTrans1 = record { commute = λ {a₁ b₁ h} → commute1 a b c f g a₁ b₁ h }
184
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
55
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
56 _==_ : {a b : YObj} → YHom a b → YHom a b → Set (c₂ ⊔ c₁)
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
57 _==_ f g = TMap f ≡ TMap g
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
58
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
59 infix 4 _==_
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
60
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
61 isSetsAop : IsCategory YObj YHom _==_ _+_ Yid
189
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
62 isSetsAop =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
63 record { isEquivalence = record {refl = refl ; trans = ≡-trans ; sym = ≡-sym}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
64 ; identityL = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
65 ; identityR = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
66 ; o-resp-≈ = λ{a b c f g h i } → o-resp-≈ {a} {b} {c} {f} {g} {h} {i}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
67 ; associative = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
68 } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
69 o-resp-≈ : {A₁ B C : YObj} {f g : YHom A₁ B} {h i : YHom B C} →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
70 f == g → h == i → h + f == i + g
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
71 o-resp-≈ refl refl = refl
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
72
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
73 SetsAop : Category (suc (ℓ ⊔ (suc c₂) ⊔ c₁)) (suc ( ℓ ⊔ (suc c₂) ⊔ c₁)) (c₂ ⊔ c₁)
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
74 SetsAop =
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
75 record { Obj = YObj
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
76 ; Hom = YHom
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
77 ; _o_ = _+_
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
78 ; _≈_ = _==_
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
79 ; Id = Yid
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
80 ; isCategory = isSetsAop
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
81 }
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
82
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
83 -- A is Locally small
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
84 postulate ≈-≡ : {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
85
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
86 import Relation.Binary.PropositionalEquality
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
87 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
88 postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c₂ c₂
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
89
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
90 -- non cotravariant version
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
91
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
92 y-obj' : (a : Obj A) → Functor A Sets
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
93 y-obj' a = record {
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
94 FObj = λ b → Hom A a b
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
95 ; FMap = λ {b c : Obj A } → λ ( f : Hom A b c ) → λ (g : Hom A a b ) → A [ f o g ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
96 ; isFunctor = record {
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
97 identity = identity
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
98 ; distr = λ {a} {b} {c} {f} {g} → distr1 a b c f g
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
99 ; ≈-cong = cong1
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
100 }
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
101 } where
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
102 lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
103 lemma-y-obj1 {b} x = let open ≈-Reasoning (A) in ≈-≡ idL
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
104 identity : {b : Obj A} → Sets [ (λ (g : Hom A a b ) → A [ id1 A b o g ]) ≈ ( λ g → g ) ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
105 identity {b} = extensionality lemma-y-obj1
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
106 lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c) → (x : Hom A a a₁ )→ A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
107 lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning (A) in ≈-≡ ( begin
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
108 A [ A [ g o f ] o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
109 ≈↑⟨ assoc ⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
110 A [ g o A [ f o x ] ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
111 ≈⟨⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
112 ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
113 ∎ )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
114 distr1 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c) →
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
115 Sets [ (λ g₁ → A [ A [ g o f ] o g₁ ]) ≈ Sets [ (λ g₁ → A [ g o g₁ ]) o (λ g₁ → A [ f o g₁ ]) ] ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
116 distr1 a b c f g = extensionality ( λ x → lemma-y-obj2 a b c f g x )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
117 cong1 : {A₁ B : Obj A} {f g : Hom A A₁ B} → A [ f ≈ g ] → Sets [ (λ g₁ → A [ f o g₁ ]) ≈ (λ g₁ → A [ g o g₁ ]) ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
118 cong1 eq = extensionality ( λ x → ( ≈-≡ (
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
119 (IsCategory.o-resp-≈ ( Category.isCategory A )) ( IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A ))) eq )))
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
120
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
121 ----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
122 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
123 -- Object mapping in Yoneda Functor
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
124 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
125 ----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
126
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
127 open import Function
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
128
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
129 y-obj : (a : Obj A) → Functor (Category.op A) (Sets {c₂})
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
130 y-obj a = record {
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
131 FObj = λ b → Hom (Category.op A) a b ;
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
132 FMap = λ {b c : Obj A } → λ ( f : Hom A c b ) → λ (g : Hom A b a ) → (Category.op A) [ f o g ] ;
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
133 isFunctor = record {
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
134 identity = \{b} → extensionality ( λ x → lemma-y-obj1 {b} x ) ;
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
135 distr = λ {a} {b} {c} {f} {g} → extensionality ( λ x → lemma-y-obj2 a b c f g x ) ;
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
136 ≈-cong = λ eq → extensionality ( λ x → lemma-y-obj3 x eq )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
137 }
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
138 } where
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
139 lemma-y-obj1 : {b : Obj A } → (x : Hom A b a) → (Category.op A) [ id1 A b o x ] ≡ x
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
140 lemma-y-obj1 {b} x = let open ≈-Reasoning (Category.op A) in ≈-≡ idL
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
141 lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A b a₁) (g : Hom A c b ) → (x : Hom A a₁ a )→
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
142 Category.op A [ Category.op A [ g o f ] o x ] ≡ (Sets [ _[_o_] (Category.op A) g o _[_o_] (Category.op A) f ]) x
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
143 lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning (Category.op A) in ≈-≡ ( begin
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
144 Category.op A [ Category.op A [ g o f ] o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
145 ≈↑⟨ assoc ⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
146 Category.op A [ g o Category.op A [ f o x ] ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
147 ≈⟨⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
148 ( λ x → Category.op A [ g o x ] ) ( ( λ x → Category.op A [ f o x ] ) x )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
149 ∎ )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
150 lemma-y-obj3 : {b c : Obj A} {f g : Hom A c b } → (x : Hom A b a ) → A [ f ≈ g ] → Category.op A [ f o x ] ≡ Category.op A [ g o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
151 lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning (Category.op A) in ≈-≡ ( begin
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
152 Category.op A [ f o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
153 ≈⟨ resp refl-hom eq ⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
154 Category.op A [ g o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
155 ∎ )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
156
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
157
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
158 ----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
159 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
160 -- Hom mapping in Yoneda Functor
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
161 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
162 ----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
163
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
164 y-tmap : ( a b : Obj A ) → (f : Hom A a b ) → (x : Obj (Category.op A)) → FObj (y-obj a) x → FObj (y-obj b ) x
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
165 y-tmap a b f x = λ ( g : Hom A x a ) → A [ f o g ] -- ( h : Hom A x b )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
166
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
167 y-map : {a b : Obj A } → (f : Hom A a b ) → YHom (y-obj a) (y-obj b)
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
168 y-map {a} {b} f = record { TMap = y-tmap a b f ; isNTrans = isNTrans1 {a} {b} f } where
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
169 lemma-y-obj4 : {a₁ b₁ : Obj (Category.op A)} {g : Hom (Category.op A) a₁ b₁} → {a b : Obj A } → (f : Hom A a b ) →
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
170 Sets [ Sets [ FMap (y-obj b) g o y-tmap a b f a₁ ] ≈
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
171 Sets [ y-tmap a b f b₁ o FMap (y-obj a) g ] ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
172 lemma-y-obj4 {a₁} {b₁} {g} {a} {b} f = let open ≈-Reasoning A in extensionality ( λ x → ≈-≡ ( begin
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
173 A [ A [ f o x ] o g ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
174 ≈↑⟨ assoc ⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
175 A [ f o A [ x o g ] ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
176 ∎ ) )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
177 isNTrans1 : {a b : Obj A } → (f : Hom A a b ) → IsNTrans (Category.op A) (Sets {c₂}) (y-obj a) (y-obj b) (y-tmap a b f )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
178 isNTrans1 {a} {b} f = record { commute = λ{a₁ b₁ g } → lemma-y-obj4 {a₁} {b₁} {g} {a} {b} f }
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
179
188
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
180 postulate extensionality1 : Relation.Binary.PropositionalEquality.Extensionality c₁ c₂
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
181
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
182 -----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
183 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
184 -- Yoneda Functor itself
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
185 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
186 -----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
187
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
188 YonedaFunctor : Functor A SetsAop
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
189 YonedaFunctor = record {
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
190 FObj = λ a → y-obj a
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
191 ; FMap = λ f → y-map f
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
192 ; isFunctor = record {
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
193 identity = identity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
194 ; distr = distr1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
195 ; ≈-cong = ≈-cong
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
196
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
197 }
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
198 } where
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
199 ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → SetsAop [ y-map f ≈ y-map g ]
188
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
200 ≈-cong {a} {b} {f} {g} eq = let open ≈-Reasoning (A) in -- (λ x g₁ → A [ f o g₁ ] ) ≡ (λ x g₁ → A [ g o g₁ ] )
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
201 extensionality1 ( λ x → extensionality (
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
202 λ h → ≈-≡ ( begin
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
203 A [ f o h ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
204 ≈⟨ resp refl-hom eq ⟩
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
205 A [ g o h ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
206
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
207 ) ) )
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
208 identity : {a : Obj A} → SetsAop [ y-map (id1 A a) ≈ id1 SetsAop (y-obj a ) ]
188
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
209 identity {a} = let open ≈-Reasoning (A) in -- (λ x g → A [ id1 A a o g ] ) ≡ (λ a₁ x → x)
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
210 extensionality1 ( λ x → extensionality (
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
211 λ g → ≈-≡ ( begin
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
212 A [ id1 A a o g ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
213 ≈⟨ idL ⟩
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
214 g
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
215
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
216 ) ) )
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
217 distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → SetsAop [ y-map (A [ g o f ]) ≈ SetsAop [ y-map g o y-map f ] ]
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
218 distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- (λ x g₁ → (A [ (A [ g o f] o g₁ ]))) ≡ (λ x x₁ → A [ g o A [ f o x₁ ] ] )
188
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
219 extensionality1 ( λ x → extensionality (
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
220 λ h → ≈-≡ ( begin
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
221 A [ A [ g o f ] o h ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
222 ≈↑⟨ assoc ⟩
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
223 A [ g o A [ f o h ] ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
224
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
225 ) ) )
184
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
226
185
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
227
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
228 ------
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
229 --
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
230 -- F : A → Sets ∈ Obj SetsAop
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
231 --
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
232 -- F(a) ⇔ Nat(h_a,F)
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
233 -- x ∈ F(a) , (g : Hom A b a) → ( FMap F g ) x
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
234 ------
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
235
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
236 F2Natmap : {a : Obj A} → {F : Obj SetsAop} → {x : FObj F a} → (b : Obj (Category.op A)) → Hom Sets (FObj (y-obj a) b) (FObj F b)
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
237 F2Natmap {a} {F} {x} b = λ ( g : Hom A b a ) → ( FMap F g ) x
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
238
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
239 F2Nat : {a : Obj A} → {F : Obj SetsAop} → FObj F a → Hom SetsAop (y-obj a) F
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
240 F2Nat {a} {F} x = record { TMap = F2Natmap {a} {F} {x} ; isNTrans = isNTrans1 } where
192
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
241 commute1 : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} (g : Hom A a₁ a) →
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
242 (Sets [ FMap F f o FMap F g ]) x ≡ FMap F (A [ g o f ] ) x
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
243 commute1 g = let open ≈-Reasoning (Sets) in
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
244 cong ( λ f → f x ) ( sym ( distr F ) )
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
245 commute : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} →
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
246 Sets [ Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ] ≈ Sets [ F2Natmap {a} {F} {x} b o FMap (y-obj a) f ] ]
192
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
247 commute {a₁} {b} {f} = let open ≈-Reasoning (Sets) in
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
248 begin
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
249 Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ]
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
250 ≈⟨⟩
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
251 Sets [ FMap F f o (λ ( g : Hom A a₁ a ) → ( FMap F g ) x) ]
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
252 ≈⟨ extensionality ( λ (g : Hom A a₁ a) → commute1 {a₁} {b} {f} g ) ⟩
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
253 Sets [ (λ ( g : Hom A b a ) → ( FMap F g ) x) o FMap (y-obj a) f ]
192
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
254 ≈⟨⟩
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
255 Sets [ F2Natmap {a} {F} {x} b o FMap (y-obj a) f ]
192
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
256
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
257 isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) (y-obj a) F (F2Natmap {a} {F})
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
258 isNTrans1 = record { commute = λ {a₁ b f} → commute {a₁} {b} {f} }
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
259
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
260
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
261 Nat2F : {a : Obj A} → {F : Obj SetsAop} → Hom SetsAop (y-obj a) F → FObj F a
193
4e6f080f0107 isomorphic problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
262 Nat2F {a} {F} ha = ( TMap ha a ) (id1 A a)
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
263
193
4e6f080f0107 isomorphic problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
264 F2Nat→Nat2F : {a : Obj A } → {F : Obj SetsAop} → (fa : FObj F a) → Nat2F {a} {F} (F2Nat {a} {F} fa) ≡ fa
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
265 -- FMap F (Category.Category.Id A) fa ≡ fa
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
266 F2Nat→Nat2F {a} {F} fa = let open ≈-Reasoning (Sets) in cong ( λ f → f fa ) (
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
267 begin
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
268 ( FMap F (id1 A _ ))
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
269 ≈⟨ IsFunctor.identity (isFunctor F) ⟩
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
270 id1 Sets (FObj F a)
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
271 ∎ )
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
272
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
273 open import Relation.Binary.PropositionalEquality
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
274
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
275 postulate extensionality2 : Relation.Binary.PropositionalEquality.Extensionality c₁ c₂
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
276 postulate extensionality3 : Relation.Binary.PropositionalEquality.Extensionality c₂ c₂
193
4e6f080f0107 isomorphic problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
277
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
278 -- F : op A → Sets
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
279 -- ha : NTrans (op A) Sets (y-obj {a}) F
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
280 -- FMap F g o TMap ha a ≈ TMap ha b o FMap (y-obj {a}) g
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
281
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
282 Nat2F→F2Nat : {a : Obj A } → {F : Obj SetsAop} → (ha : Hom SetsAop (y-obj a) F) → SetsAop [ F2Nat {a} {F} (Nat2F {a} {F} ha) ≈ ha ]
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
283 Nat2F→F2Nat {a} {F} ha = let open ≡-Reasoning in
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
284 begin
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
285 ( λ (b : Obj A ) → λ (g : Hom A b a ) → FMap F g (TMap ha a (Category.Category.Id A)) )
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
286 ≡⟨ extensionality2 ( λ b → extensionality3 (λ g → (
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
287 begin
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
288 FMap F g (TMap ha a (Category.Category.Id A))
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
289 ≡⟨ Relation.Binary.PropositionalEquality.cong (λ f → f (Category.Category.Id A)) (IsNTrans.commute (isNTrans ha)) ⟩
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
290 TMap ha b (FMap (y-obj a) g (Category.Category.Id A))
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
291 ≡⟨⟩
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
292 TMap ha b ( (A Category.o Category.Category.Id A) g )
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
293 ≡⟨ Relation.Binary.PropositionalEquality.cong ( TMap ha b ) ( ≈-≡ (IsCategory.identityL ( Category.isCategory A ))) ⟩
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
294 TMap ha b g
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
295
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
296 ))) ⟩
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
297 TMap ha
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
298
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
299
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
300 -- Yoneda's Lemma
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
301 -- full and faithfull
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
302 -- that is FMapp Yoneda is injective and surjective
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
303
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
304 -- λ b g → (A Category.o f₁) g
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
305 YondaLemma1 : {a a' : Obj A } {f : FObj (FObj YonedaFunctor a) a' } → SetsAop [ F2Nat {a'} {FObj YonedaFunctor a} f ≈ FMap YonedaFunctor f ]
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
306 YondaLemma1 {a} {a'} {f} = refl
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
307
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
308 -- F2Nat is bijection so FMap YonedaFunctor also ( using functional extensionality )
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
309
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
310 -- Full embedding requires injective on Object, that is
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
311 -- FObj YonedaFunctor a ≡ FObj YonedaFunctor b → a ≡ b
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
312
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
313 dom-equivalence : {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → Category.dom A f ≡ Category.dom A g
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
314 dom-equivalence eq = refl
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
315
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
316 equive-elm : ∀{n} {a b : Set n} → (f : a ) → a ≡ b → b
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
317 equive-elm f refl = f
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
318
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
319 equive-arrow : {a b : Obj A } → (f : Hom A a b ) → Hom A a b ≡ Hom A a a → Hom A a a
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
320 equive-arrow f eq = equive-elm f eq
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
321
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
322 -- equive-hom : {a b : Obj A } → {f : Hom A a b } → Hom A a b ≡ Hom A a a → a ≡ b
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
323 -- equive-hom {a} {b} {f} eq = {!!}
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
324
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
325 -- YondaLemma2 : {a b : Obj A } → (λ x → FObj (FObj YonedaFunctor a) x) ≡ (λ x → FObj (FObj YonedaFunctor b ) x) →
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
326 -- {f : Hom A a b } → a ≡ b
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
327 -- YondaLemma2 {a} {b} eq {f} = {!!} eq
198
1edba4226474 comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 197
diff changeset
328 -- I cannot prove this, sorry