Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate filter.agda @ 266:0d7d6e4da36f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Sep 2019 17:07:40 +0900 |
parents | 9bf100ae50ac |
children | e469de3ae7cc |
rev | line source |
---|---|
190 | 1 open import Level |
236 | 2 open import Ordinals |
3 module filter {n : Level } (O : Ordinals {n}) where | |
4 | |
190 | 5 open import zf |
236 | 6 open import logic |
7 import OD | |
193 | 8 |
190 | 9 open import Relation.Nullary |
10 open import Relation.Binary | |
11 open import Data.Empty | |
12 open import Relation.Binary | |
13 open import Relation.Binary.Core | |
14 open import Relation.Binary.PropositionalEquality | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
15 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
16 |
236 | 17 open inOrdinal O |
18 open OD O | |
19 open OD.OD | |
190 | 20 |
236 | 21 open _∧_ |
22 open _∨_ | |
23 open Bool | |
24 | |
265 | 25 record Filter ( L : OD ) : Set (suc n) where |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
26 field |
266 | 27 F1 : { p q : Ordinal } → def L p → p o< osuc q → def L q |
28 F2 : { p q : Ordinal } → def L p → def L q → def L (minα p q) | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
29 |
265 | 30 open Filter |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
31 |
265 | 32 proper-filter : {L : OD} → Filter L → Set n |
266 | 33 proper-filter {L} P = ¬ ( def L o∅ ) |
190 | 34 |
266 | 35 prime-filter : {L : OD} → Filter L → {p q : Ordinal } → Set n |
36 prime-filter {L} P {p} {q} = def L ( maxα p q) → ( def L p ) ∨ ( def L q ) | |
190 | 37 |
266 | 38 ultra-filter : {L : OD} → Filter L → {p : Ordinal } → Set n |
39 ultra-filter {L} P {p} = ( def L p ) ∨ ( ¬ ( def L p )) | |
190 | 40 |
265 | 41 postulate |
42 dist-ord : {p q r : Ordinal } → minα p ( maxα q r ) ≡ maxα ( minα p q ) ( minα p r ) | |
43 | |
266 | 44 filter-lemma1 : {L : OD} → (P : Filter L) → {p q : Ordinal } → ( (p : Ordinal ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} |
45 filter-lemma1 {L} P {p} {q} u lt with u p | u q | |
46 filter-lemma1 {L} P {p} {q} u lt | case1 x | case1 y = case1 x | |
47 filter-lemma1 {L} P {p} {q} u lt | case1 x | case2 y = case1 x | |
48 filter-lemma1 {L} P {p} {q} u lt | case2 x | case1 y = case2 y | |
49 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y with trio< p q | |
50 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri< a ¬b ¬c = ⊥-elim ( y lt ) | |
51 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri≈ ¬a refl ¬c = ⊥-elim ( y lt ) | |
52 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri> ¬a ¬b c = ⊥-elim ( x lt ) | |
53 | |
54 generated-filter : {L : OD} → Filter L → (p : Ordinal ) → Filter ( record { def = λ x → def L x ∨ (x ≡ p) } ) | |
55 generated-filter {L} P p = record { | |
56 F1 = {!!} ; F2 = {!!} | |
57 } | |
58 | |
59 -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) | |
60 | |
61 infinite = ZF.infinite OD→ZF | |
62 | |
63 Hω2 : Filter (Power (Power infinite)) | |
64 Hω2 = {!!} | |
65 |