annotate filter.agda @ 266:0d7d6e4da36f

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 30 Sep 2019 17:07:40 +0900
parents 9bf100ae50ac
children e469de3ae7cc
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
190
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 open import Level
236
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
2 open import Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
3 module filter {n : Level } (O : Ordinals {n}) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
4
190
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import zf
236
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
6 open import logic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
7 import OD
193
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
8
190
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Relation.Nullary
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Relation.Binary
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Data.Empty
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import Relation.Binary
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13 open import Relation.Binary.Core
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 open import Relation.Binary.PropositionalEquality
191
9eb6a8691f02 choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
15 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
9eb6a8691f02 choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
16
236
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
17 open inOrdinal O
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
18 open OD O
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
19 open OD.OD
190
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20
236
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
21 open _∧_
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
22 open _∨_
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
23 open Bool
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
24
265
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 236
diff changeset
25 record Filter ( L : OD ) : Set (suc n) where
191
9eb6a8691f02 choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
26 field
266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
27 F1 : { p q : Ordinal } → def L p → p o< osuc q → def L q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
28 F2 : { p q : Ordinal } → def L p → def L q → def L (minα p q)
191
9eb6a8691f02 choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
29
265
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 236
diff changeset
30 open Filter
191
9eb6a8691f02 choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
31
265
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 236
diff changeset
32 proper-filter : {L : OD} → Filter L → Set n
266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
33 proper-filter {L} P = ¬ ( def L o∅ )
190
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34
266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
35 prime-filter : {L : OD} → Filter L → {p q : Ordinal } → Set n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
36 prime-filter {L} P {p} {q} = def L ( maxα p q) → ( def L p ) ∨ ( def L q )
190
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37
266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
38 ultra-filter : {L : OD} → Filter L → {p : Ordinal } → Set n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
39 ultra-filter {L} P {p} = ( def L p ) ∨ ( ¬ ( def L p ))
190
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40
265
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 236
diff changeset
41 postulate
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 236
diff changeset
42 dist-ord : {p q r : Ordinal } → minα p ( maxα q r ) ≡ maxα ( minα p q ) ( minα p r )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 236
diff changeset
43
266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
44 filter-lemma1 : {L : OD} → (P : Filter L) → {p q : Ordinal } → ( (p : Ordinal ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
45 filter-lemma1 {L} P {p} {q} u lt with u p | u q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
46 filter-lemma1 {L} P {p} {q} u lt | case1 x | case1 y = case1 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
47 filter-lemma1 {L} P {p} {q} u lt | case1 x | case2 y = case1 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
48 filter-lemma1 {L} P {p} {q} u lt | case2 x | case1 y = case2 y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
49 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y with trio< p q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
50 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri< a ¬b ¬c = ⊥-elim ( y lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
51 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri≈ ¬a refl ¬c = ⊥-elim ( y lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
52 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y | tri> ¬a ¬b c = ⊥-elim ( x lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
53
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
54 generated-filter : {L : OD} → Filter L → (p : Ordinal ) → Filter ( record { def = λ x → def L x ∨ (x ≡ p) } )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
55 generated-filter {L} P p = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
56 F1 = {!!} ; F2 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
57 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
58
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
59 -- H(ω,2) = Power ( Power ω ) = Def ( Def ω))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
60
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
61 infinite = ZF.infinite OD→ZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
62
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
63 Hω2 : Filter (Power (Power infinite))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
64 Hω2 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
65