annotate src/Tychonoff.agda @ 1332:87df366f85f3

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 13 Jun 2023 12:28:04 +0900
parents 47d3cc596d68
children ecfc24f53df4
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
1175
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1174
diff changeset
1 {-# OPTIONS --allow-unsolved-metas #-}
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 open import Level
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 open import Ordinals
1170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
4 module Tychonoff {n : Level } (O : Ordinals {n}) where
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import logic
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open _∧_
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open _∨_
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open Bool
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10
1113
384ba5a3c019 fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1112
diff changeset
11 import OD
384ba5a3c019 fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1112
diff changeset
12 open import Relation.Nullary
384ba5a3c019 fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1112
diff changeset
13 open import Data.Empty
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 open import Relation.Binary.Core
1143
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1142
diff changeset
15 open import Relation.Binary.Definitions
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 open import Relation.Binary.PropositionalEquality
1124
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1123
diff changeset
17 import BAlgebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1123
diff changeset
18 open BAlgebra O
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 open inOrdinal O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 open OD O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 open OD.OD
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 open ODAxiom odAxiom
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 import OrdUtil
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 import ODUtil
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 open Ordinals.Ordinals O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26 open Ordinals.IsOrdinals isOrdinal
1300
47d3cc596d68 remove next
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1298
diff changeset
27 -- open Ordinals.IsNext isNext
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28 open OrdUtil O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 open ODUtil O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31 import ODC
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 open ODC O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33
1102
a9a7ad7784cc fix topology
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1101
diff changeset
34 open import filter O
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
35 open import filter-util O
1218
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
36 open import ZProduct O
1170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
37 open import Topology O
1293
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1284
diff changeset
38 -- open import maximum-filter O
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
40 open Filter
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
41 open Topology
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
42
1237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
43 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
44 -- Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
45 -- → Compact TP → Compact TQ → Compact (ProductTopology TP TQ)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
46 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
47 -- ULFP : Compact <=> Every ultra filter F have a limit i.e. open sets which contains the limit (Neighbor limit) is in F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
48 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
49 -- Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
50 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
51 -- FP FQ : create projections of a filter F, so it is ULFP
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
52 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
53 -- Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
54 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
55 -- the product of each limits must be a limit of ultra filter F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
56 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
57 -- its neighbor is in F, because we can decompose Neighbors nei into subbase of Product Topology which is a open set of P ∋ p or Q ∋ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
58 -- so (P x q) ∋ limit ∨ (q x P) ∋ limit. P x q ⊆ nei , so nei ∋ limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
59 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
60 -- uflPQ : (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
61 -- → UFLP (ProductTopology TP TQ) F UF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
62 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
63 -- QED.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
64
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
65 -- FIP is UFL
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
66
1159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
67 -- filter Base
1205
kono
parents: 1204
diff changeset
68 record FBase (P : HOD ) (X : Ordinal ) (u : Ordinal) : Set n where
1153
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1152
diff changeset
69 field
1161
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1160
diff changeset
70 b x : Ordinal
1155
c4fd0bfdfbae FIP to Filter done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1154
diff changeset
71 b⊆X : * b ⊆ * X
1161
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1160
diff changeset
72 sb : Subbase (* b) x
1158
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
73 u⊆P : * u ⊆ P
1154
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1153
diff changeset
74 x⊆u : * x ⊆ * u
1155
c4fd0bfdfbae FIP to Filter done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1154
diff changeset
75
1170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
76 record UFLP {P : HOD} (TP : Topology P) (F : Filter {Power P} {P} (λ x → x) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
77 (ultra : ultra-filter F ) : Set (suc (suc n)) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
78 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
79 limit : Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
80 P∋limit : odef P limit
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
81 is-limit : {v : Ordinal} → Neighbor TP limit v → filter F ∋ (* v)
1165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1164
diff changeset
82
1283
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
83 -- If any ultrafilter has a limit such that all its neighbors
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
84 -- are within the filter, it possesses the finite intersection
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
85 -- property (FIP).
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
86
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
87 -- The finite intersection property defines a filter, and through Zorn's lemma,
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
88 -- we can maximize it to obtain an ultrafilter.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
89 -- If the limit of the filter is not contained within a closed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
90 -- set 'p' in the FIP, then it must be in the complement of 'p'
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
91 -- (P \ p). Since this complement is open and contains the limit,
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
92 -- it is included in the ultrafilter. However, this implies that
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
93 -- both 'p' and its complement (P \ p) are present in the filter,
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
94 -- which contradicts the proper characteristic of the ultrafilter,
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
95 -- meaning that the filter contains no empty set.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1279
diff changeset
96
1279
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
97 --
1161
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1160
diff changeset
98 UFLP→FIP : {P : HOD} (TP : Topology P) →
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
99 ((F : Filter {Power P} {P} (λ x → x) ) (UF : ultra-filter F ) → UFLP TP F UF ) → FIP TP
1163
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1162
diff changeset
100 UFLP→FIP {P} TP uflp with trio< (& P) o∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1162
diff changeset
101 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a )
1201
kono
parents: 1200
diff changeset
102 ... | tri≈ ¬a P=0 ¬c = record { limit = λ CX fip → o∅ ; is-limit = fip03 } where
1237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
103 -- P is empty ( this case cannot happen because ulfp → 0 < P )
1163
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1162
diff changeset
104 fip02 : {x : Ordinal } → ¬ odef P x
1201
kono
parents: 1200
diff changeset
105 fip02 {x} Px = ⊥-elim ( o<¬≡ (sym P=0) (∈∅< Px) )
kono
parents: 1200
diff changeset
106 fip03 : {X : Ordinal} (CX : * X ⊆ CS TP) (fip : {x : Ordinal} → Subbase (* X) x → o∅ o< x) {x : Ordinal} →
kono
parents: 1200
diff changeset
107 odef (* X) x → odef (* x) o∅
kono
parents: 1200
diff changeset
108 -- empty P case
kono
parents: 1200
diff changeset
109 -- if 0 < X then 0 < x ∧ P ∋ xfrom fip
kono
parents: 1200
diff changeset
110 -- if 0 ≡ X then ¬ odef X x
kono
parents: 1200
diff changeset
111 fip03 {X} CX fip {x} xx with trio< o∅ X
kono
parents: 1200
diff changeset
112 ... | tri< 0<X ¬b ¬c = ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) (trans (trans (sym *iso) (cong (*) P=0)) o∅≡od∅ ) (sym &iso)
kono
parents: 1200
diff changeset
113 ( cs⊆L TP (subst (λ k → odef (CS TP) k ) (sym &iso) (CX xx)) xe ))) where
kono
parents: 1200
diff changeset
114 0<x : o∅ o< x
kono
parents: 1200
diff changeset
115 0<x = fip (gi xx )
kono
parents: 1200
diff changeset
116 e : HOD -- we have an element of x
kono
parents: 1200
diff changeset
117 e = ODC.minimal O (* x) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<x) )
kono
parents: 1200
diff changeset
118 xe : odef (* x) (& e)
kono
parents: 1200
diff changeset
119 xe = ODC.x∋minimal O (* x) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<x) )
kono
parents: 1200
diff changeset
120 ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) ( begin
kono
parents: 1200
diff changeset
121 * X ≡⟨ cong (*) (sym 0=X) ⟩
kono
parents: 1200
diff changeset
122 * o∅ ≡⟨ o∅≡od∅ ⟩
kono
parents: 1200
diff changeset
123 od∅ ∎ ) (sym &iso) xx ) ) where open ≡-Reasoning
kono
parents: 1200
diff changeset
124 ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c )
1204
kono
parents: 1203
diff changeset
125 ... | tri> ¬a ¬b 0<P = record { limit = λ CSX fip → limit CSX fip ; is-limit = uf01 } where
1143
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1142
diff changeset
126 fip : {X : Ordinal} → * X ⊆ CS TP → Set n
1187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1175
diff changeset
127 fip {X} CSX = {x : Ordinal} → Subbase (* X) x → o∅ o< x
1154
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1153
diff changeset
128 N : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip CSX → HOD
1161
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1160
diff changeset
129 N {X} CSX fp = record { od = record { def = λ u → FBase P X u } ; odmax = osuc (& P)
1159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
130 ; <odmax = λ {x} lt → subst₂ (λ j k → j o< osuc k) &iso refl (⊆→o≤ (FBase.u⊆P lt)) }
1158
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
131 N⊆PP : {X : Ordinal } → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → N CSX fp ⊆ Power P
1159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
132 N⊆PP CSX fp nx b xb = FBase.u⊆P nx xb
1237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
133 -- filter base is not empty, it is necessary to maximize fip filter
1204
kono
parents: 1203
diff changeset
134 nc : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fip : fip CSX) → HOD
1205
kono
parents: 1204
diff changeset
135 nc {X} 0<X CSX fip = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) -- an element of X
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
136 N∋nc :{X : Ordinal} → (0<X : o∅ o< X) → (CSX : * X ⊆ CS TP)
1204
kono
parents: 1203
diff changeset
137 → (fip : fip CSX) → odef (N CSX fip) (& (nc 0<X CSX fip) )
1205
kono
parents: 1204
diff changeset
138 N∋nc {X} 0<X CSX fip = record { b = X ; x = & e ; b⊆X = λ x → x ; sb = gi Xe ; u⊆P = nn02 ; x⊆u = λ x → x } where
1201
kono
parents: 1200
diff changeset
139 e : HOD -- we have an element of X
kono
parents: 1200
diff changeset
140 e = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) )
kono
parents: 1200
diff changeset
141 Xe : odef (* X) (& e)
kono
parents: 1200
diff changeset
142 Xe = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) )
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
143 nn01 = ODC.minimal O (* (& e)) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) (fip (gi Xe))) )
1205
kono
parents: 1204
diff changeset
144 nn02 : * (& (nc 0<X CSX fip)) ⊆ P
kono
parents: 1204
diff changeset
145 nn02 = subst (λ k → k ⊆ P ) (sym *iso) (cs⊆L TP (CSX Xe ) )
kono
parents: 1204
diff changeset
146
1237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
147 0<PP : o∅ o< & (Power P) -- Power P contaisn od∅, so it is not empty
1201
kono
parents: 1200
diff changeset
148 0<PP = subst (λ k → k o< & (Power P)) &iso ( c<→o< (subst (λ k → odef (Power P) k) (sym &iso) nn00 )) where
kono
parents: 1200
diff changeset
149 nn00 : odef (Power P) o∅
kono
parents: 1200
diff changeset
150 nn00 x lt with subst (λ k → odef k x) o∅≡od∅ lt
kono
parents: 1200
diff changeset
151 ... | x<0 = ⊥-elim ( ¬x<0 x<0)
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
152 --
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
153 -- FIP defines a filter
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
154 --
1158
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
155 F : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → Filter {Power P} {P} (λ x → x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
156 F {X} CSX fp = record { filter = N CSX fp ; f⊆L = N⊆PP CSX fp ; filter1 = f1 ; filter2 = f2 } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
157 f1 : {p q : HOD} → Power P ∋ q → N CSX fp ∋ p → p ⊆ q → N CSX fp ∋ q
1161
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1160
diff changeset
158 f1 {p} {q} Xq record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; u⊆P = Xp ; x⊆u = x⊆p } p⊆q =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1160
diff changeset
159 record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; u⊆P = subst (λ k → k ⊆ P) (sym *iso) f10 ; x⊆u = λ {z} xp →
1158
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
160 subst (λ k → odef k z) (sym *iso) (p⊆q (subst (λ k → odef k z) *iso (x⊆p xp))) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
161 f10 : q ⊆ P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
162 f10 {x} qx = subst (λ k → odef P k) &iso (power→ P _ Xq (subst (λ k → odef q k) (sym &iso) qx ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
163 f2 : {p q : HOD} → N CSX fp ∋ p → N CSX fp ∋ q → Power P ∋ (p ∩ q) → N CSX fp ∋ (p ∩ q)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
164 f2 {p} {q} Np Nq Xpq = record { b = & Np+Nq ; x = & xp∧xq ; b⊆X = f20 ; sb = sbpq ; u⊆P = p∩q⊆p ; x⊆u = f22 } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
165 p∩q⊆p : * (& (p ∩ q)) ⊆ P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
166 p∩q⊆p {x} pqx = subst (λ k → odef P k) &iso (power→ P _ Xpq (subst₂ (λ j k → odef j k ) *iso (sym &iso) pqx ))
1159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
167 Np+Nq = * (FBase.b Np) ∪ * (FBase.b Nq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
168 xp∧xq = * (FBase.x Np) ∩ * (FBase.x Nq)
1155
c4fd0bfdfbae FIP to Filter done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1154
diff changeset
169 sbpq : Subbase (* (& Np+Nq)) (& xp∧xq)
1159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
170 sbpq = subst₂ (λ j k → Subbase j k ) (sym *iso) refl ( g∩ (sb⊆ case1 (FBase.sb Np)) (sb⊆ case2 (FBase.sb Nq)))
1155
c4fd0bfdfbae FIP to Filter done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1154
diff changeset
171 f20 : * (& Np+Nq) ⊆ * X
c4fd0bfdfbae FIP to Filter done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1154
diff changeset
172 f20 {x} npq with subst (λ k → odef k x) *iso npq
1159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
173 ... | case1 np = FBase.b⊆X Np np
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
174 ... | case2 nq = FBase.b⊆X Nq nq
1155
c4fd0bfdfbae FIP to Filter done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1154
diff changeset
175 f22 : * (& xp∧xq) ⊆ * (& (p ∩ q))
1161
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1160
diff changeset
176 f22 = subst₂ ( λ j k → j ⊆ k ) (sym *iso) (sym *iso) (λ {w} xpq
1159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1158
diff changeset
177 → ⟪ subst (λ k → odef k w) *iso ( FBase.x⊆u Np (proj1 xpq)) , subst (λ k → odef k w) *iso ( FBase.x⊆u Nq (proj2 xpq)) ⟫ )
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
178 --
1207
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
179 -- it contains no empty sets becase it is a finite intersection ( Subbase (* X) x )
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
180 --
1207
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
181 proper : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fip : fip {X} CSX) → ¬ (N CSX fip ∋ od∅)
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
182 proper {X} CSX fip record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; u⊆P = u⊆P ; x⊆u = x⊆u } = o≤> x≤0 (fip (fp00 _ _ b⊆X sb)) where
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
183 x≤0 : x o< osuc o∅
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
184 x≤0 = subst₂ (λ j k → j o< osuc k) &iso (trans (cong (&) *iso) ord-od∅ ) (⊆→o≤ (x⊆u))
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
185 fp00 : (b x : Ordinal) → * b ⊆ * X → Subbase (* b) x → Subbase (* X) x
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
186 fp00 b y b<X (gi by ) = gi ( b<X by )
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
187 fp00 b _ b<X (g∩ {y} {z} sy sz ) = g∩ (fp00 _ _ b<X sy) (fp00 _ _ b<X sz)
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
188 --
1237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
189 -- then we have maximum ultra filter ( Zorn lemma )
1239
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1237
diff changeset
190 -- to debug this file, commet out the maximum filter and open import
1237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
191 -- otherwise the check requires a minute
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
192 --
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
193 maxf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp)
1293
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1284
diff changeset
194 maxf {X} 0<X CSX fp = ? -- F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp)
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
195 mf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Filter {Power P} {P} (λ x → x)
1293
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1284
diff changeset
196 mf {X} 0<X CSX fp = ? -- MaximumFilter.mf (maxf 0<X CSX fp)
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
197 ultraf : {X : Ordinal} → (0<X : o∅ o< X ) → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ultra-filter ( mf 0<X CSX fp)
1293
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1284
diff changeset
198 ultraf {X} 0<X CSX fp = ? -- F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp)
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
199 --
1279
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
200 -- so it has a limit as a limit of FIP
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
201 --
1170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
202 limit : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal
1203
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1202
diff changeset
203 limit {X} CSX fp with trio< o∅ X
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
204 ... | tri< 0<X ¬b ¬c = UFLP.limit ( uflp ( mf 0<X CSX fp ) (ultraf 0<X CSX fp))
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
205 ... | tri≈ ¬a 0=X ¬c = o∅
1203
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1202
diff changeset
206 ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c )
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
207 --
1201
kono
parents: 1200
diff changeset
208 -- the limit is an limit of entire elements of X
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
209 --
1170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
210 uf01 : {X : Ordinal} (CSX : * X ⊆ CS TP) (fp : fip {X} CSX) {x : Ordinal} → odef (* X) x → odef (* x) (limit CSX fp)
1204
kono
parents: 1203
diff changeset
211 uf01 {X} CSX fp {x} xx with trio< o∅ X
1206
kono
parents: 1205
diff changeset
212 ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c )
1205
kono
parents: 1204
diff changeset
213 ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬a (subst (λ k → o∅ o< k) &iso ( ∈∅< xx )))
1237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
214 -- 0<X limit is in * x or P \ * x
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
215 ... | tri< 0<X ¬b ¬c with ∨L\X {P} {* x} {UFLP.limit ( uflp ( mf 0<X CSX fp ) (ultraf 0<X CSX fp))}
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
216 (UFLP.P∋limit ( uflp ( mf 0<X CSX fp ) (ultraf 0<X CSX fp)))
1206
kono
parents: 1205
diff changeset
217 ... | case1 lt = lt -- odef (* x) y
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
218 ... | case2 nlxy = ⊥-elim (MaximumFilter.proper (maxf 0<X CSX fp) uf11 ) where
1237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
219 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
220 -- if (* x) do not conatins a limit, P \ * x contains it, (P \ * x) is open so it is the maxf ( UFLP.is-limit )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
221 -- UFLP contains (* x) and P \ * x, it contains od∅, contradicts the proper
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1236
diff changeset
222 --
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
223 y = UFLP.limit ( uflp ( mf 0<X CSX fp ) (ultraf 0<X CSX fp))
1207
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
224 x⊆P : * x ⊆ P
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
225 x⊆P = cs⊆L TP (CSX (subst (λ k → odef (* X) k) (sym &iso) xx))
1206
kono
parents: 1205
diff changeset
226 uf10 : odef (P \ * x ) y
kono
parents: 1205
diff changeset
227 uf10 = nlxy
kono
parents: 1205
diff changeset
228 uf03 : Neighbor TP y (& (P \ * x ))
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
229 uf03 = record { u = _ ; ou = P\CS=OS TP (CSX (subst (λ k → odef (* X) k ) (sym &iso) xx))
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
230 ; ux = subst (λ k → odef k y) (sym *iso) uf10
1206
kono
parents: 1205
diff changeset
231 ; v⊆P = λ {z} xz → proj1 (subst(λ k → odef k z) *iso xz )
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
232 ; u⊆v = λ x → x }
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
233 uf07 : * (& (* x , * x)) ⊆ * X
1207
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
234 uf07 {y} lt with subst (λ k → odef k y) *iso lt
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
235 ... | case1 refl = subst (λ k → odef (* X) k ) (sym &iso) xx
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
236 ... | case2 refl = subst (λ k → odef (* X) k ) (sym &iso) xx
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
237 uf05 : odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) x
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
238 uf05 = MaximumFilter.F⊆mf (maxf 0<X CSX fp) record { b = & (* x , * x) ; b⊆X = uf07
1207
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
239 ; sb = gi (subst (λ k → odef k x) (sym *iso) (case1 (sym &iso)) ) ; u⊆P = x⊆P ; x⊆u = λ x → x }
1213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
240 uf061 : odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) (& (* (& (P \ * x ))))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
241 uf061 = UFLP.is-limit ( uflp (mf 0<X CSX fp) (ultraf 0<X CSX fp)) {& (P \ * x)} uf03
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
242 -- uf06 (same as uf061) have yellow if zorn lemma is not imported
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
243 uf06 : odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) (& (P \ * x ))
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
244 uf06 = subst (λ k → odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) k) &iso (UFLP.is-limit ( uflp (mf 0<X CSX fp) (ultraf 0<X CSX fp)) {& (P \ * x)} uf03 )
1206
kono
parents: 1205
diff changeset
245 uf13 : & ((* x) ∩ (P \ * x )) ≡ o∅
1207
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
246 uf13 = subst₂ (λ j k → j ≡ k ) refl ord-od∅ (cong (&) ( ==→o≡ record { eq→ = uf14 ; eq← = λ {x} lt → ⊥-elim (¬x<0 lt) } ) ) where
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
247 uf14 : {y : Ordinal} → odef (* x ∩ (P \ * x)) y → odef od∅ y
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
248 uf14 {y} ⟪ xy , ⟪ Px , ¬xy ⟫ ⟫ = ⊥-elim ( ¬xy xy )
1206
kono
parents: 1205
diff changeset
249 uf12 : odef (Power P) (& ((* x) ∩ (P \ * x )))
1207
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
250 uf12 z pz with subst (λ k → odef k z) *iso pz
56d501cf0318 UFLP→FIP done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1206
diff changeset
251 ... | ⟪ xz , ⟪ Pz , ¬xz ⟫ ⟫ = Pz
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
252 uf11 : filter (MaximumFilter.mf (maxf 0<X CSX fp)) ∋ od∅
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
253 uf11 = subst (λ k → odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) k ) (trans uf13 (sym ord-od∅))
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
254 ( filter2 (MaximumFilter.mf (maxf 0<X CSX fp)) (subst (λ k → odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) k) (sym &iso) uf05) uf06 uf12 )
1142
7b924ef65373 Topology clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1136
diff changeset
255
1208
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
256 x⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → x ⊆ Cl TP x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
257 x⊆Clx {P} TP {x} x<p {y} xy = ⟪ x<p xy , (λ c csc x<c → x<c xy ) ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
258 P⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → Cl TP x ⊆ P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
259 P⊆Clx {P} TP {x} x<p {y} xy = proj1 xy
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
260
1279
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
261 --
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
262 -- Finite intersection property implies that any ultra filter have a limit, that is, neighbors of the limit is in the filter.
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
263 --
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
264 -- An ultra filter F is given. Take a closure of a filter. It is closed and it has finite intersection property, because F is porper.
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
265 -- So it has a limit as a FIP. If a neighbor p which contains the limit, p or P \ p is in the ultra filter.
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
266 -- If it is in P \ p, it cannot contains the limit, contradiction.
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
267 --
1158
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
268 FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
269 → (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
270 FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01
1209
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
271 ; P∋limit = ufl10 ; is-limit = ufl00 } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
272 F∋P : odef (filter F) (& P)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
273 F∋P with ultra-filter.ultra UF {od∅} (λ z az → ⊥-elim (¬x<0 (subst (λ k → odef k z) *iso az)) ) (λ z az → proj1 (subst (λ k → odef k z) *iso az ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
274 ... | case1 fp = ⊥-elim ( ultra-filter.proper UF fp )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
275 ... | case2 flp = subst (λ k → odef (filter F) k) (cong (&) (==→o≡ fl20)) flp where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
276 fl20 : (P \ Ord o∅) =h= P
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
277 fl20 = record { eq→ = λ {x} lt → proj1 lt ; eq← = λ {x} lt → ⟪ lt , (λ lt → ⊥-elim (¬x<0 lt) ) ⟫ }
1209
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
278 0<P : o∅ o< & P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
279 0<P with trio< o∅ (& P)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
280 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
281 ... | tri≈ ¬a b ¬c = ⊥-elim (ultra-filter.proper UF (subst (λ k → odef (filter F) k) (trans (sym b) (sym ord-od∅)) F∋P) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
282 ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c)
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
283 --
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
284 -- take closure of given filter elements
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
285 --
1160
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1159
diff changeset
286 CF : HOD
1293
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1284
diff changeset
287 CF = Replace (filter F) (λ x → Cl TP x ) {P} record { ≤COD = λ {z} {y} lt → proj1 lt }
1160
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1159
diff changeset
288 CF⊆CS : CF ⊆ CS TP
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
289 CF⊆CS {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (CS TP) k) (sym x=ψz) (CS∋Cl TP (* z))
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
290 --
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
291 -- it is set of closed set and has FIP ( F is proper )
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
292 --
1208
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
293 ufl08 : {z : Ordinal} → odef (Power P) (& (Cl TP (* z)))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
294 ufl08 {z} w zw with subst (λ k → odef k w ) *iso zw
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
295 ... | t = proj1 t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
296 fx→px : {x : Ordinal} → odef (filter F) x → Power P ∋ * x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
297 fx→px {x} fx z xz = f⊆L F fx _ (subst (λ k → odef k z) *iso xz )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
298 F∋sb : {x : Ordinal} → Subbase CF x → odef (filter F) x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
299 F∋sb {x} (gi record { z = z ; az = az ; x=ψz = x=ψz }) = ufl07 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
300 ufl09 : * z ⊆ P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
301 ufl09 {y} zy = f⊆L F az _ zy
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
302 ufl07 : odef (filter F) x
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
303 ufl07 = subst (λ k → odef (filter F) k) &iso ( filter1 F (subst (λ k → odef (Power P) k) (trans (sym x=ψz) (sym &iso)) ufl08 )
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
304 (subst (λ k → odef (filter F) k) (sym &iso) az)
1208
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
305 (subst (λ k → * z ⊆ k ) (trans (sym *iso) (sym (cong (*) x=ψz)) ) (x⊆Clx TP {* z} ufl09 ) ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
306 F∋sb (g∩ {x} {y} sx sy) = filter2 F (subst (λ k → odef (filter F) k) (sym &iso) (F∋sb sx))
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
307 (subst (λ k → odef (filter F) k) (sym &iso) (F∋sb sy))
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
308 (λ z xz → fx→px (F∋sb sx) _ (subst (λ k → odef k _) (sym *iso) (proj1 (subst (λ k → odef k z) *iso xz) )))
1187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1175
diff changeset
309 ufl01 : {x : Ordinal} → Subbase (* (& CF)) x → o∅ o< x
1208
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
310 ufl01 {x} sb = ufl04 where
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
311 ufl04 : o∅ o< x
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
312 ufl04 with trio< o∅ x
1208
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
313 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
314 ... | tri≈ ¬a b ¬c = ⊥-elim ( ultra-filter.proper UF (subst (λ k → odef (filter F) k) (
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
315 begin
1208
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
316 x ≡⟨ sym b ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
317 o∅ ≡⟨ sym ord-od∅ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
318 & od∅ ∎ ) (F∋sb (subst (λ k → Subbase k x) *iso sb )) )) where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1207
diff changeset
319 ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c)
1209
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
320 ufl10 : odef P (FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
321 ufl10 = FIP.L∋limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 {& P} ufl11 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1208
diff changeset
322 ufl11 : odef (* (& CF)) (& P)
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
323 ufl11 = subst (λ k → odef k (& P)) (sym *iso) record { z = _ ; az = F∋P ; x=ψz = sym (cong (&) (trans (cong (Cl TP) *iso) (ClL TP))) }
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
324 --
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
325 -- so we have a limit
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
326 --
1170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
327 limit : Ordinal
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
328 limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01
1170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
329 ufl02 : {y : Ordinal } → odef (* (& CF)) y → odef (* y) limit
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
330 ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01
1174
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
331 --
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
332 -- Neigbor of limit ⊆ Filter
375615f9d60f Func and Funcs
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1173
diff changeset
333 --
1210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
334 -- if odef (* X) x, Cl TP x contains limit (ufl02)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
335 -- in (nei : Neighbor TP limit v) , there is an open Set u which contains the limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
336 -- F contains u or P \ u because F is ultra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
337 -- if F ∋ u, then F ∋ v from u ⊆ v which is a propetery of Neighbor
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
338 -- if F ∋ P \ u, it is a closed set (Cl (P \ u) ≡ P \ u) and it does not contains the limit
1210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
339 -- this contradicts ufl02
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
340 pp : {v : Ordinal} → (nei : Neighbor TP limit v ) → Power P ∋ (* (Neighbor.u nei))
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
341 pp {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } z pz
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
342 = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) ou ) (subst (λ k → odef k z) *iso pz )
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
343 ufl00 : {v : Ordinal} → Neighbor TP limit v → filter F ∋ * v
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
344 ufl00 {v} nei with ultra-filter.ultra UF (pp nei ) (NEG P (pp nei ))
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
345 ... | case1 fu = subst (λ k → odef (filter F) k) &iso
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
346 ( filter1 F (subst (λ k → odef (Power P) k ) (sym &iso) px) fu (subst (λ k → u ⊆ k ) (sym *iso) (Neighbor.u⊆v nei))) where
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
347 u = * (Neighbor.u nei)
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
348 px : Power P ∋ * v
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
349 px z vz = Neighbor.v⊆P nei (subst (λ k → odef k z) *iso vz )
1210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
350 ... | case2 nfu = ⊥-elim ( ¬P\u∋limit P\u∋limit ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
351 u = * (Neighbor.u nei)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
352 P\u : HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
353 P\u = P \ u
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
354 P\u∋limit : odef P\u limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
355 P\u∋limit = subst (λ k → odef k limit) *iso ( ufl02 (subst (λ k → odef k (& P\u)) (sym *iso) ufl03 )) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
356 ufl04 : & P\u ≡ & (Cl TP (* (& P\u)))
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
357 ufl04 = cong (&) (sym (trans (cong (Cl TP) *iso)
1210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
358 (CS∋x→Clx=x TP (P\OS=CS TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou nei) )))))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
359 ufl03 : odef CF (& P\u )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
360 ufl03 = record { z = _ ; az = nfu ; x=ψz = ufl04 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
361 ¬P\u∋limit : ¬ odef P\u limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1209
diff changeset
362 ¬P\u∋limit ⟪ Pl , nul ⟫ = nul ( Neighbor.ux nei )
1163
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1162
diff changeset
363
1124
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1123
diff changeset
364 -- product topology of compact topology is compact
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
365
1218
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
366 import Axiom.Extensionality.Propositional
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
367 postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
368 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
369
1279
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
370 -- FilterQP : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x))
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
371 -- → Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x)
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
372 -- FilterQP {P} {Q} F = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? }
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
373 --
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
374 -- projection-of-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x))
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
375 -- → Filter {Power P} {P} (λ x → x)
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
376 -- projection-of-filter = ?
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
377 --
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
378 -- projection-of-ultra-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F)
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
379 -- → ultra-filter (projection-of-filter F)
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
380 -- projection-of-ultra-filter = ?
1274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1239
diff changeset
381
1279
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
382 --
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
383 -- We have UFLP both in P and Q. Given an ultra filter F on P x Q. It has limits on P and Q because a projection of ultra filter
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
384 -- is a ultra filter. Show the product of the limits is a limit of P x Q. A neighbor of P x Q contains subbase of P x Q,
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
385 -- which is either inverse projection x of P or Q. The x in in projection of F, because of UFLP. So it is in F, because of the
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
386 -- property of the filter.
7e7d8d825632 P x Q ⇆ Q x P done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1274
diff changeset
387 --
1142
7b924ef65373 Topology clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1136
diff changeset
388 Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ)
1158
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1155
diff changeset
389 Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
390 uflP : (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
391 → UFLP TP F UF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
392 uflP F UF = FIP→UFLP TP (Compact→FIP TP CP) F UF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
393 uflQ : (F : Filter {Power Q} {Q} (λ x → x)) (UF : ultra-filter F)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
394 → UFLP TQ F UF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
395 uflQ F UF = FIP→UFLP TQ (Compact→FIP TQ CQ) F UF
1201
kono
parents: 1200
diff changeset
396 -- Product of UFL has a limit point
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
397 uflPQ : (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
398 → UFLP (ProductTopology TP TQ) F UF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
399 uflPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , * ( UFLP.limit uflq ) > ; P∋limit = Pf ; is-limit = isL } where
1213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
400 F∋PQ : odef (filter F) (& (ZFP P Q))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
401 F∋PQ with ultra-filter.ultra UF {od∅} (λ z az → ⊥-elim (¬x<0 (subst (λ k → odef k z) *iso az)) ) (λ z az → proj1 (subst (λ k → odef k z) *iso az ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
402 ... | case1 fp = ⊥-elim ( ultra-filter.proper UF fp )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
403 ... | case2 flp = subst (λ k → odef (filter F) k) (cong (&) (==→o≡ fl20)) flp where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
404 fl20 : (ZFP P Q \ Ord o∅) =h= ZFP P Q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
405 fl20 = record { eq→ = λ {x} lt → proj1 lt ; eq← = λ {x} lt → ⟪ lt , (λ lt → ⊥-elim (¬x<0 lt) ) ⟫ }
1218
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
406 0<PQ : o∅ o< & (ZFP P Q)
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
407 0<PQ with trio< o∅ (& (ZFP P Q))
1213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
408 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
409 ... | tri≈ ¬a b ¬c = ⊥-elim (ultra-filter.proper UF (subst (λ k → odef (filter F) k) (trans (sym b) (sym ord-od∅)) F∋PQ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1211
diff changeset
410 ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c)
1218
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
411 apq : HOD
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
412 apq = ODC.minimal O (ZFP P Q) (0<P→ne 0<PQ)
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
413 is-apq : ZFP P Q ∋ apq
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
414 is-apq = ODC.x∋minimal O (ZFP P Q) (0<P→ne 0<PQ)
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
415 ap : odef P ( zπ1 is-apq )
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
416 ap = zp1 is-apq
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
417 aq : odef Q ( zπ2 is-apq )
362e43a1477c brain damaged fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1217
diff changeset
418 aq = zp2 is-apq
1223
kono
parents: 1222
diff changeset
419 F⊆pxq : {x : HOD } → filter F ∋ x → x ⊆ ZFP P Q
kono
parents: 1222
diff changeset
420 F⊆pxq {x} fx {y} xy = f⊆L F fx y (subst (λ k → odef k y) (sym *iso) xy)
kono
parents: 1222
diff changeset
421
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
422 ---
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
423 --- FP is a P-projection of F, which is a ultra filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
424 ---
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
425 FP : Filter {Power P} {P} (λ x → x)
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
426 FP = Filter-Proj1 {P} {Q} is-apq F
1161
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1160
diff changeset
427 UFP : ultra-filter FP
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
428 UFP = Filter-Proj1-UF {P} {Q} is-apq F UF
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
429 uflp : UFLP TP FP UFP
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
430 uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
431
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
432 -- FPSet is in Projection ⁻¹ F
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
433 FPSet⊆F1 : {x : Ordinal } → odef (filter FP) x → odef (filter F) (& (ZFP (* x) Q))
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
434 FPSet⊆F1 {x} fpx = FPSet⊆F is-apq F fpx
1154
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1153
diff changeset
435
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
436 FQ : Filter {Power Q} {Q} (λ x → x)
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
437 FQ = Filter-Proj2 {P} {Q} is-apq F
1166
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1165
diff changeset
438 UFQ : ultra-filter FQ
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
439 UFQ = Filter-Proj2-UF {P} {Q} is-apq F UF
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
440
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
441 -- FQSet is in Projection ⁻¹ F
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
442 FQSet⊆F1 : {x : Ordinal } → odef (filter FQ) x → odef (filter F) (& (ZFP P (* x) ))
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
443 FQSet⊆F1 {x} fpx = FQSet⊆F is-apq F fpx
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
444
1169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
445 uflq : UFLP TQ FQ UFQ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1168
diff changeset
446 uflq = FIP→UFLP TQ (Compact→FIP TQ CQ) FQ UFQ
1154
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1153
diff changeset
447
1166
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1165
diff changeset
448 Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >)
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
449 Pf = ab-pair (UFLP.P∋limit uflp) (UFLP.P∋limit uflq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
450
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
451 isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → filter F ∋ * v
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
452 isL {v} nei = filter1 F (λ z xz → Neighbor.v⊆P nei (subst (λ k → odef k z) *iso xz))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
453 (subst (λ k → odef (filter F) k) (sym &iso) (F∋base pqb b∋l )) bpq⊆v where
1228
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
454 --
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
455 -- Product Topolgy's open set contains a subbase which is an element of ZPF p Q or ZPF P q
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
456 -- Neighbor of limit contains an open set which conatins a limit
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
457 -- every point of an open set is covered by a subbase
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
458 -- so there is a subbase which contains a limit, the subbase is an element of projection of a filter (P or Q)
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
459 TPQ = ProductTopology TP TQ
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
460 lim = & < * (UFLP.limit uflp) , * (UFLP.limit uflq) >
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
461 bpq : Base (ZFP P Q) (pbase TP TQ) (Neighbor.u nei) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
462 bpq = Neighbor.ou nei (Neighbor.ux nei)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
463 b∋l : odef (* (Base.b bpq)) lim
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
464 b∋l = Base.bx bpq
1172
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1171
diff changeset
465 pqb : Subbase (pbase TP TQ) (Base.b bpq )
1211
f17d060e0bda UFLP→FIP FIP→UFLP with Zorn done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1210
diff changeset
466 pqb = Base.sb bpq
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
467 pqb⊆opq : * (Base.b bpq) ⊆ * ( Neighbor.u nei )
1228
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
468 bpq⊆v : * (Base.b bpq) ⊆ * v
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
469 bpq⊆v {x} bx = Neighbor.u⊆v nei (pqb⊆opq bx)
1173
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1172
diff changeset
470 pqb⊆opq = Base.b⊆u bpq
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
471 F∋base : {b : Ordinal } → Subbase (pbase TP TQ) b → odef (* b) lim → odef (filter F) b
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
472 F∋base {b} (gi (case1 px)) bl = subst (λ k → odef (filter F) k) (sym (BaseP.prod px)) f∋b where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
473 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
474 -- subbase of product topology which includes lim is in FP, so in F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
475 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
476 isl00 : odef (ZFP (* (BaseP.p px)) Q) lim
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
477 isl00 = subst (λ k → odef k lim ) (trans (cong (*) (BaseP.prod px)) *iso ) bl
1228
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
478 px∋limit : odef (* (BaseP.p px)) (UFLP.limit uflp)
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
479 px∋limit = isl01 isl00 refl where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
480 isl01 : {x : Ordinal } → odef (ZFP (* (BaseP.p px)) Q) x → x ≡ lim → odef (* (BaseP.p px)) (UFLP.limit uflp)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
481 isl01 (ab-pair {a} {b} bx qx) ab=lim = subst (λ k → odef (* (BaseP.p px)) k) a=lim bx where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
482 a=lim : a ≡ UFLP.limit uflp
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
483 a=lim = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj1 ( prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) ab=lim) ) )))
1228
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
484 fp∋b : filter FP ∋ * (BaseP.p px)
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
485 fp∋b = UFLP.is-limit uflp record { u = _ ; ou = BaseP.op px ; ux = px∋limit
1228
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
486 ; v⊆P = λ {x} lt → os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) (BaseP.op px)) lt ; u⊆v = λ x → x }
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
487 f∋b : odef (filter F) (& (ZFP (* (BaseP.p px)) Q))
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
488 f∋b = FPSet⊆F1 (subst (λ k → odef (filter FP) k ) &iso fp∋b )
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
489 F∋base {b} (gi (case2 qx)) bl = subst (λ k → odef (filter F) k) (sym (BaseQ.prod qx)) f∋b where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
490 isl00 : odef (ZFP P (* (BaseQ.q qx))) lim
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
491 isl00 = subst (λ k → odef k lim ) (trans (cong (*) (BaseQ.prod qx)) *iso ) bl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
492 qx∋limit : odef (* (BaseQ.q qx)) (UFLP.limit uflq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
493 qx∋limit = isl01 isl00 refl where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
494 isl01 : {x : Ordinal } → odef (ZFP P (* (BaseQ.q qx)) ) x → x ≡ lim → odef (* (BaseQ.q qx)) (UFLP.limit uflq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
495 isl01 (ab-pair {a} {b} px bx) ab=lim = subst (λ k → odef (* (BaseQ.q qx)) k) b=lim bx where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
496 b=lim : b ≡ UFLP.limit uflq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
497 b=lim = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj2 ( prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) ab=lim) ) )))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
498 fp∋b : filter FQ ∋ * (BaseQ.q qx)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
499 fp∋b = UFLP.is-limit uflq record { u = _ ; ou = BaseQ.oq qx ; ux = qx∋limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
500 ; v⊆P = λ {x} lt → os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) (BaseQ.oq qx)) lt ; u⊆v = λ x → x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
501 f∋b : odef (filter F) (& (ZFP P (* (BaseQ.q qx)) ))
1298
2c34f2b554cf Replace and filter projection fix done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1294
diff changeset
502 f∋b = FQSet⊆F1 (subst (λ k → odef (filter FQ) k ) &iso fp∋b )
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
503 F∋base (g∩ {x} {y} b1 b2) bl = F∋x∩y where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
504 -- filter contains finite intersection
1228
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
505 fb01 : odef (filter F) x
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
506 fb01 = F∋base b1 (proj1 (subst (λ k → odef k lim) *iso bl))
1228
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
507 fb02 : odef (filter F) y
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
508 fb02 = F∋base b2 (proj2 (subst (λ k → odef k lim) *iso bl))
1228
e3f20bc4fac9 last part of Tychonoff
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1227
diff changeset
509 F∋x∩y : odef (filter F) (& (* x ∩ * y))
1229
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
510 F∋x∩y = filter2 F (subst (λ k → odef (filter F) k) (sym &iso) fb01) (subst (λ k → odef (filter F) k) (sym &iso) fb02)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
511 (CAP (ZFP P Q) (subst (λ k → odef (Power (ZFP P Q)) k) (sym &iso) (f⊆L F fb01))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1228
diff changeset
512 (subst (λ k → odef (Power (ZFP P Q)) k) (sym &iso) (f⊆L F fb02)))
1154
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1153
diff changeset
513
1170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
514
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
515
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
516
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
517
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1169
diff changeset
518