annotate yoneda.agda @ 265:367e8fde93ee

add limit
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 22 Sep 2013 11:08:41 +0900
parents 24e83b8b81be
children 8c72f5284bc8
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
1 ---
189
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
2 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
3 -- A → Sets^A^op : Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
4 -- Contravariant Functor h_a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
5 -- Nat(h_a,F)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
6 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
7 ----
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
8
178
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Category -- https://github.com/konn/category-agda
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Level
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Category.Sets
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 module yoneda { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 open import HomReasoning
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 open import cat-utility
179
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 178
diff changeset
16 open import Relation.Binary.Core
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 178
diff changeset
17 open import Relation.Binary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 178
diff changeset
18
178
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
6626a7cd9129 Yoneda Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 -- Contravariant Functor : op A → Sets ( Obj of Sets^{A^op} )
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
21 -- Obj and Hom of Sets^A^op
181
b58453d90db6 contravariant functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 180
diff changeset
22
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
23 open Functor
183
ea6fc610b480 Contravariant functor done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 182
diff changeset
24
184
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
25 YObj = Functor (Category.op A) (Sets {c₂})
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
26 YHom = λ (f : YObj ) → λ (g : YObj ) → NTrans (Category.op A) (Sets {c₂}) f g
184
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
27
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
28 open NTrans
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
29 Yid : {a : YObj} → YHom a a
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
30 Yid {a} = record { TMap = \a -> \x -> x ; isNTrans = isNTrans1 {a} } where
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
31 isNTrans1 : {a : YObj } → IsNTrans (Category.op A) (Sets {c₂}) a a (\a -> \x -> x )
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
32 isNTrans1 {a} = record { commute = refl }
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
33
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
34 _+_ : {a b c : YObj} → YHom b c → YHom a b → YHom a c
185
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
35 _+_{a} {b} {c} f g = record { TMap = λ x → Sets [ TMap f x o TMap g x ] ; isNTrans = isNTrans1 } where
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
36 commute1 : (a b c : YObj ) (f : YHom b c) (g : YHom a b )
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
37 (a₁ b₁ : Obj (Category.op A)) (h : Hom (Category.op A) a₁ b₁) →
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
38 Sets [ Sets [ FMap c h o Sets [ TMap f a₁ o TMap g a₁ ] ] ≈
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
39 Sets [ Sets [ TMap f b₁ o TMap g b₁ ] o FMap a h ] ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
40 commute1 a b c f g a₁ b₁ h = let open ≈-Reasoning (Sets {c₂})in begin
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
41 Sets [ FMap c h o Sets [ TMap f a₁ o TMap g a₁ ] ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
42 ≈⟨ assoc {_} {_} {_} {_} {FMap c h } {TMap f a₁} {TMap g a₁} ⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
43 Sets [ Sets [ FMap c h o TMap f a₁ ] o TMap g a₁ ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
44 ≈⟨ car (nat f) ⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
45 Sets [ Sets [ TMap f b₁ o FMap b h ] o TMap g a₁ ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
46 ≈↑⟨ assoc {_} {_} {_} {_} { TMap f b₁} {FMap b h } {TMap g a₁}⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
47 Sets [ TMap f b₁ o Sets [ FMap b h o TMap g a₁ ] ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
48 ≈⟨ cdr {_} {_} {_} {_} {_} { TMap f b₁} (nat g) ⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
49 Sets [ TMap f b₁ o Sets [ TMap g b₁ o FMap a h ] ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
50 ≈↑⟨ assoc {_} {_} {_} {_} {TMap f b₁} {TMap g b₁} { FMap a h} ⟩
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
51 Sets [ Sets [ TMap f b₁ o TMap g b₁ ] o FMap a h ]
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
52
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
53 isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) a c (λ x → Sets [ TMap f x o TMap g x ])
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
54 isNTrans1 = record { commute = λ {a₁ b₁ h} → commute1 a b c f g a₁ b₁ h }
184
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
55
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
56 _==_ : {a b : YObj} → YHom a b → YHom a b → Set (c₂ ⊔ c₁)
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
57 _==_ f g = ∀{x : Obj (Category.op A)} → (Sets {c₂}) [ TMap f x ≈ TMap g x ]
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
58
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
59 infix 4 _==_
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
60
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
61 isSetsAop : IsCategory YObj YHom _==_ _+_ Yid
189
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
62 isSetsAop =
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
63 record { isEquivalence = record {refl = refl ; trans = \{i j k} → trans1 {_} {_} {i} {j} {k} ; sym = \{i j} → sym1 {_} {_} {i} {j}}
189
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
64 ; identityL = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
65 ; identityR = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
66 ; o-resp-≈ = λ{a b c f g h i } → o-resp-≈ {a} {b} {c} {f} {g} {h} {i}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
67 ; associative = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
68 } where
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
69 sym1 : {a b : YObj } {i j : YHom a b } → i == j → j == i
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
70 sym1 {a} {b} {i} {j} eq {x} = let open ≈-Reasoning (Sets {c₂}) in begin
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
71 TMap j x
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
72 ≈⟨ sym eq ⟩
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
73 TMap i x
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
74
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
75 trans1 : {a b : YObj } {i j k : YHom a b} → i == j → j == k → i == k
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
76 trans1 {a} {b} {i} {j} {k} i=j j=k {x} = let open ≈-Reasoning (Sets {c₂}) in begin
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
77 TMap i x
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
78 ≈⟨ i=j ⟩
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
79 TMap j x
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
80 ≈⟨ j=k ⟩
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
81 TMap k x
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
82
189
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
83 o-resp-≈ : {A₁ B C : YObj} {f g : YHom A₁ B} {h i : YHom B C} →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
84 f == g → h == i → h + f == i + g
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
85 o-resp-≈ {a} {b} {c} {f} {g} {h} {i} f=g h=i {x} = let open ≈-Reasoning (Sets {c₂}) in begin
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
86 (Sets {c₂}) [ TMap h x o TMap f x ]
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
87 ≈⟨ resp f=g h=i ⟩
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
88 (Sets {c₂}) [ TMap i x o TMap g x ]
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
89
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
90
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
91 SetsAop : Category (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁)) (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁)) (c₂ ⊔ c₁)
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
92 SetsAop =
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
93 record { Obj = YObj
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
94 ; Hom = YHom
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
95 ; _o_ = _+_
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
96 ; _≈_ = _==_
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
97 ; Id = Yid
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
98 ; isCategory = isSetsAop
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
99 }
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
100
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
101 -- A is Locally small
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
102 postulate ≈-≡ : {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
103
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
104 import Relation.Binary.PropositionalEquality
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
105 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
106 postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c₂ c₂
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
107
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
108
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
109 ----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
110 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
111 -- Object mapping in Yoneda Functor
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
112 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
113 ----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
114
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
115 open import Function
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
116
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
117 y-obj : (a : Obj A) → Functor (Category.op A) (Sets {c₂})
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
118 y-obj a = record {
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
119 FObj = λ b → Hom (Category.op A) a b ;
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
120 FMap = λ {b c : Obj A } → λ ( f : Hom A c b ) → λ (g : Hom A b a ) → (Category.op A) [ f o g ] ;
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
121 isFunctor = record {
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
122 identity = \{b} → extensionality ( λ x → lemma-y-obj1 {b} x ) ;
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
123 distr = λ {a} {b} {c} {f} {g} → extensionality ( λ x → lemma-y-obj2 a b c f g x ) ;
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
124 ≈-cong = λ eq → extensionality ( λ x → lemma-y-obj3 x eq )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
125 }
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
126 } where
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
127 lemma-y-obj1 : {b : Obj A } → (x : Hom A b a) → (Category.op A) [ id1 A b o x ] ≡ x
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
128 lemma-y-obj1 {b} x = let open ≈-Reasoning (Category.op A) in ≈-≡ idL
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
129 lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A b a₁) (g : Hom A c b ) → (x : Hom A a₁ a )→
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
130 Category.op A [ Category.op A [ g o f ] o x ] ≡ (Sets [ _[_o_] (Category.op A) g o _[_o_] (Category.op A) f ]) x
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
131 lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning (Category.op A) in ≈-≡ ( begin
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
132 Category.op A [ Category.op A [ g o f ] o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
133 ≈↑⟨ assoc ⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
134 Category.op A [ g o Category.op A [ f o x ] ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
135 ≈⟨⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
136 ( λ x → Category.op A [ g o x ] ) ( ( λ x → Category.op A [ f o x ] ) x )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
137 ∎ )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
138 lemma-y-obj3 : {b c : Obj A} {f g : Hom A c b } → (x : Hom A b a ) → A [ f ≈ g ] → Category.op A [ f o x ] ≡ Category.op A [ g o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
139 lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning (Category.op A) in ≈-≡ ( begin
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
140 Category.op A [ f o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
141 ≈⟨ resp refl-hom eq ⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
142 Category.op A [ g o x ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
143 ∎ )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
144
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
145
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
146 ----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
147 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
148 -- Hom mapping in Yoneda Functor
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
149 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
150 ----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
151
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
152 y-tmap : ( a b : Obj A ) → (f : Hom A a b ) → (x : Obj (Category.op A)) → FObj (y-obj a) x → FObj (y-obj b ) x
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
153 y-tmap a b f x = λ ( g : Hom A x a ) → A [ f o g ] -- ( h : Hom A x b )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
154
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
155 y-map : {a b : Obj A } → (f : Hom A a b ) → YHom (y-obj a) (y-obj b)
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
156 y-map {a} {b} f = record { TMap = y-tmap a b f ; isNTrans = isNTrans1 {a} {b} f } where
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
157 lemma-y-obj4 : {a₁ b₁ : Obj (Category.op A)} {g : Hom (Category.op A) a₁ b₁} → {a b : Obj A } → (f : Hom A a b ) →
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
158 Sets [ Sets [ FMap (y-obj b) g o y-tmap a b f a₁ ] ≈
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
159 Sets [ y-tmap a b f b₁ o FMap (y-obj a) g ] ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
160 lemma-y-obj4 {a₁} {b₁} {g} {a} {b} f = let open ≈-Reasoning A in extensionality ( λ x → ≈-≡ ( begin
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
161 A [ A [ f o x ] o g ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
162 ≈↑⟨ assoc ⟩
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
163 A [ f o A [ x o g ] ]
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
164 ∎ ) )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
165 isNTrans1 : {a b : Obj A } → (f : Hom A a b ) → IsNTrans (Category.op A) (Sets {c₂}) (y-obj a) (y-obj b) (y-tmap a b f )
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
166 isNTrans1 {a} {b} f = record { commute = λ{a₁ b₁ g } → lemma-y-obj4 {a₁} {b₁} {g} {a} {b} f }
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
167
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
168 -----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
169 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
170 -- Yoneda Functor itself
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
171 --
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
172 -----
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
173
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
174 YonedaFunctor : Functor A SetsAop
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
175 YonedaFunctor = record {
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
176 FObj = λ a → y-obj a
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
177 ; FMap = λ f → y-map f
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
178 ; isFunctor = record {
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
179 identity = identity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
180 ; distr = distr1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
181 ; ≈-cong = ≈-cong
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
182
186
b2e01aa0924d y-nat (FMap of Yoneda Functor )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
183 }
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
184 } where
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
185 ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → SetsAop [ y-map f ≈ y-map g ]
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
186 ≈-cong {a} {b} {f} {g} eq = let open ≈-Reasoning (A) in -- (λ x g₁ → A [ f o g₁ ] ) ≡ (λ x g₁ → A [ g o g₁ ] )
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
187 extensionality ( λ h → ≈-≡ ( begin
188
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
188 A [ f o h ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
189 ≈⟨ resp refl-hom eq ⟩
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
190 A [ g o h ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
191
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
192 ) )
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
193 identity : {a : Obj A} → SetsAop [ y-map (id1 A a) ≈ id1 SetsAop (y-obj a ) ]
188
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
194 identity {a} = let open ≈-Reasoning (A) in -- (λ x g → A [ id1 A a o g ] ) ≡ (λ a₁ x → x)
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
195 extensionality ( λ g → ≈-≡ ( begin
188
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
196 A [ id1 A a o g ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
197 ≈⟨ idL ⟩
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
198 g
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
199
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
200 ) )
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
201 distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → SetsAop [ y-map (A [ g o f ]) ≈ SetsAop [ y-map g o y-map f ] ]
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
202 distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- (λ x g₁ → (A [ (A [ g o f] o g₁ ]))) ≡ (λ x x₁ → A [ g o A [ f o x₁ ] ] )
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
203 extensionality ( λ h → ≈-≡ ( begin
188
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
204 A [ A [ g o f ] o h ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
205 ≈↑⟨ assoc ⟩
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
206 A [ g o A [ f o h ] ]
f4c9d7cbcbb9 Yoneda Functor Constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 187
diff changeset
207
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
208 ) )
184
d2d749318bee oeration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 183
diff changeset
209
185
173d078ee443 Yoneda join
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 184
diff changeset
210
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
211 ------
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
212 --
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
213 -- F : A → Sets ∈ Obj SetsAop
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
214 --
199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
215 -- F(a) -> Nat(h_a,F)
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
216 -- x ∈ F(a) , (g : Hom A b a) → ( FMap F g ) x
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
217 ------
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
218
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
219 F2Natmap : {a : Obj A} → {F : Obj SetsAop} → {x : FObj F a} → (b : Obj (Category.op A)) → Hom Sets (FObj (y-obj a) b) (FObj F b)
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
220 F2Natmap {a} {F} {x} b = λ ( g : Hom A b a ) → ( FMap F g ) x
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
221
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
222 F2Nat : {a : Obj A} → {F : Obj SetsAop} → FObj F a → Hom SetsAop (y-obj a) F
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
223 F2Nat {a} {F} x = record { TMap = F2Natmap {a} {F} {x} ; isNTrans = isNTrans1 } where
192
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
224 commute1 : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} (g : Hom A a₁ a) →
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
225 (Sets [ FMap F f o FMap F g ]) x ≡ FMap F (A [ g o f ] ) x
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
226 commute1 g = let open ≈-Reasoning (Sets) in
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
227 cong ( λ f → f x ) ( sym ( distr F ) )
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
228 commute : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} →
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
229 Sets [ Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ] ≈ Sets [ F2Natmap {a} {F} {x} b o FMap (y-obj a) f ] ]
192
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
230 commute {a₁} {b} {f} = let open ≈-Reasoning (Sets) in
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
231 begin
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
232 Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ]
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
233 ≈⟨⟩
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
234 Sets [ FMap F f o (λ ( g : Hom A a₁ a ) → ( FMap F g ) x) ]
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
235 ≈⟨ extensionality ( λ (g : Hom A a₁ a) → commute1 {a₁} {b} {f} g ) ⟩
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
236 Sets [ (λ ( g : Hom A b a ) → ( FMap F g ) x) o FMap (y-obj a) f ]
192
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
237 ≈⟨⟩
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
238 Sets [ F2Natmap {a} {F} {x} b o FMap (y-obj a) f ]
192
d7e4b7b441be F(a) → Nat(h_a,F) done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
239
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
240 isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) (y-obj a) F (F2Natmap {a} {F})
191
45191dc3f78a nat continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
241 isNTrans1 = record { commute = λ {a₁ b f} → commute {a₁} {b} {f} }
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
242
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
243
199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
244 -- F(a) <- Nat(h_a,F)
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
245 Nat2F : {a : Obj A} → {F : Obj SetsAop} → Hom SetsAop (y-obj a) F → FObj F a
193
4e6f080f0107 isomorphic problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
246 Nat2F {a} {F} ha = ( TMap ha a ) (id1 A a)
190
b82d7b054f28 one to one nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 189
diff changeset
247
199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
248 ----
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
249 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
250 -- Prove Bijection (as routine exercise ...)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
251 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
252 ----
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
253
193
4e6f080f0107 isomorphic problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
254 F2Nat→Nat2F : {a : Obj A } → {F : Obj SetsAop} → (fa : FObj F a) → Nat2F {a} {F} (F2Nat {a} {F} fa) ≡ fa
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
255 F2Nat→Nat2F {a} {F} fa = let open ≈-Reasoning (Sets) in cong ( λ f → f fa ) (
199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
256 -- FMap F (Category.Category.Id A) fa ≡ fa
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
257 begin
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
258 ( FMap F (id1 A _ ))
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
259 ≈⟨ IsFunctor.identity (isFunctor F) ⟩
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
260 id1 Sets (FObj F a)
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
261 ∎ )
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
262
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
263 open import Relation.Binary.PropositionalEquality
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
264
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
265 ≡-cong = Relation.Binary.PropositionalEquality.cong
193
4e6f080f0107 isomorphic problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
266
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
267 -- F : op A → Sets
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
268 -- ha : NTrans (op A) Sets (y-obj {a}) F
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
269 -- FMap F g o TMap ha a ≈ TMap ha b o FMap (y-obj {a}) g
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
270
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
271 Nat2F→F2Nat : {a : Obj A } → {F : Obj SetsAop} → (ha : Hom SetsAop (y-obj a) F) → SetsAop [ F2Nat {a} {F} (Nat2F {a} {F} ha) ≈ ha ]
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
272 Nat2F→F2Nat {a} {F} ha {b} = let open ≡-Reasoning in
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
273 begin
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
274 TMap (F2Nat {a} {F} (Nat2F {a} {F} ha)) b
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
275 ≡⟨⟩
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
276 (λ g → FMap F g (TMap ha a (Category.Category.Id A)))
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
277 ≡⟨ extensionality (λ g → (
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
278 begin
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
279 FMap F g (TMap ha a (Category.Category.Id A))
203
1c16d18a8d67 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 202
diff changeset
280 ≡⟨ ≡-cong (λ f → f (Category.Category.Id A)) (IsNTrans.commute (isNTrans ha)) ⟩
197
ec50ff189f62 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
281 TMap ha b (FMap (y-obj a) g (Category.Category.Id A))
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
282 ≡⟨⟩
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
283 TMap ha b ( (A Category.o Category.Category.Id A) g )
203
1c16d18a8d67 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 202
diff changeset
284 ≡⟨ ≡-cong ( TMap ha b ) ( ≈-≡ (IsCategory.identityL ( Category.isCategory A ))) ⟩
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
285 TMap ha b g
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
286
202
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
287 )) ⟩
58ee98bbb333 remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
288 TMap ha b
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
289
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
290
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
291 -- Yoneda's Lemma
199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
292 -- Yoneda Functor is full and faithfull
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
293 -- that is FMapp Yoneda is injective and surjective
194
3271d2d04b17 F2Nat→Nat2F done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
294
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
295 -- λ b g → (A Category.o f₁) g
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
296 YondaLemma1 : {a a' : Obj A } {f : FObj (FObj YonedaFunctor a) a' } → SetsAop [ F2Nat {a'} {FObj YonedaFunctor a} f ≈ FMap YonedaFunctor f ]
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
297 YondaLemma1 {a} {a'} {f} = refl
195
428d46dfd5aa Nat2F→F2Nat done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
298
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
299 -- F2Nat is bijection so FMap YonedaFunctor also ( using functional extensionality )
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
300
204
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
301 -- Full embedding of Yoneda Functor requires injective on Object,
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
302 --
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
303 -- But we cannot prove like this
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
304 -- FObj YonedaFunctor a ≡ FObj YonedaFunctor b → a ≡ b
204
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
305 -- YondaLemma2 : {a b x : Obj A } → (FObj (FObj YonedaFunctor a) x) ≡ (FObj (FObj YonedaFunctor b ) x) →
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
306 -- a ≡ b
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
307 -- YondaLemma2 {a} {b} eq = {!!}
253
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 204
diff changeset
308 -- N.B = ≡-cong gives you ! a ≡ b, so we cannot cong inv to prove a ≡ b
204
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
309 --
253
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 204
diff changeset
310 -- Instead we prove only
204
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
311 -- inv ( FObj YonedaFunctor a ) ≡ a
196
c040369bd6d4 give up injective on Object?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
312
204
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
313 inv : {a x : Obj A} ( f : FObj (FObj YonedaFunctor a) x) → Obj A
b2874c5086ea embedding done?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 203
diff changeset
314 inv {a} f = Category.cod A f
203
1c16d18a8d67 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 202
diff changeset
315
253
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 204
diff changeset
316 YonedaLemma21 : {a x : Obj A} ( f : ( FObj (FObj YonedaFunctor a) x) ) → inv f ≡ a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 204
diff changeset
317 YonedaLemma21 {a} {x} f = refl
203
1c16d18a8d67 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 202
diff changeset
318