Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate filter.agda @ 268:7b4a66710cdd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Sep 2019 21:22:07 +0900 |
parents | e469de3ae7cc |
children | 30e419a2be24 |
rev | line source |
---|---|
190 | 1 open import Level |
236 | 2 open import Ordinals |
3 module filter {n : Level } (O : Ordinals {n}) where | |
4 | |
190 | 5 open import zf |
236 | 6 open import logic |
7 import OD | |
193 | 8 |
190 | 9 open import Relation.Nullary |
10 open import Relation.Binary | |
11 open import Data.Empty | |
12 open import Relation.Binary | |
13 open import Relation.Binary.Core | |
14 open import Relation.Binary.PropositionalEquality | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
15 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
16 |
236 | 17 open inOrdinal O |
18 open OD O | |
19 open OD.OD | |
190 | 20 |
236 | 21 open _∧_ |
22 open _∨_ | |
23 open Bool | |
24 | |
267 | 25 _∩_ : ( A B : OD ) → OD |
26 A ∩ B = record { def = λ x → def A x ∧ def B x } | |
27 | |
28 _∪_ : ( A B : OD ) → OD | |
29 A ∪ B = Union (A , B) | |
30 | |
265 | 31 record Filter ( L : OD ) : Set (suc n) where |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
32 field |
268 | 33 F1 : { p q : OD } → L ∋ p → ({ x : OD} → _⊆_ q p {x} ) → L ∋ q |
267 | 34 F2 : { p q : OD } → L ∋ p → L ∋ q → L ∋ (p ∩ q) |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
35 |
265 | 36 open Filter |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
37 |
265 | 38 proper-filter : {L : OD} → Filter L → Set n |
267 | 39 proper-filter {L} P = ¬ ( L ∋ od∅ ) |
190 | 40 |
267 | 41 prime-filter : {L : OD} → Filter L → {p q : OD } → Set n |
42 prime-filter {L} P {p} {q} = L ∋ ( p ∪ q) → ( L ∋ p ) ∨ ( L ∋ q ) | |
190 | 43 |
267 | 44 ultra-filter : {L : OD} → Filter L → {p : OD } → Set n |
45 ultra-filter {L} P {p} = ( L ∋ p ) ∨ ( ¬ ( L ∋ p )) | |
190 | 46 |
265 | 47 postulate |
267 | 48 dist-ord : {p q r : OD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) |
265 | 49 |
267 | 50 filter-lemma1 : {L : OD} → (P : Filter L) → {p q : OD } → ( (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} |
266 | 51 filter-lemma1 {L} P {p} {q} u lt with u p | u q |
52 filter-lemma1 {L} P {p} {q} u lt | case1 x | case1 y = case1 x | |
53 filter-lemma1 {L} P {p} {q} u lt | case1 x | case2 y = case1 x | |
54 filter-lemma1 {L} P {p} {q} u lt | case2 x | case1 y = case2 y | |
268 | 55 filter-lemma1 {L} P {p} {q} u lt | case2 x | case2 y = ⊥-elim (lemma (record { proj1 = x ; proj2 = y })) where |
56 lemma : ¬ ( ¬ ( L ∋ p ) ) ∧ ( ¬ ( L ∋ q )) | |
57 lemma = {!!} | |
266 | 58 |
267 | 59 generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) |
266 | 60 generated-filter {L} P p = record { |
61 F1 = {!!} ; F2 = {!!} | |
62 } | |
63 | |
64 -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) | |
65 | |
66 infinite = ZF.infinite OD→ZF | |
67 | |
68 Hω2 : Filter (Power (Power infinite)) | |
268 | 69 Hω2 = record { F1 = {!!} ; F2 = {!!} } |
266 | 70 |