Mercurial > hg > Members > kono > Proof > category
annotate freyd.agda @ 679:20bdd2f5f708
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Nov 2017 16:33:37 +0900 |
parents | 749df4959d19 |
children | 917e51be9bbf |
rev | line source |
---|---|
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Category -- https://github.com/konn/category-agda |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
3 |
628 | 4 module freyd where |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 |
307
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
6 open import cat-utility |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
311
diff
changeset
|
7 open import HomReasoning |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 open import Relation.Binary.Core |
307
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
9 open Functor |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 |
311 | 11 -- C is small full subcategory of A ( C is image of F ) |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
12 |
307
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
13 record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
9872bddec072
small full subcategory done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
306
diff
changeset
|
14 : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where |
306
92475fe5f59e
Small Full Subcategory (underconstruction)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
305
diff
changeset
|
15 field |
442 | 16 SFSF : Functor A A |
17 SFSFMap← : { a b : Obj A } → Hom A (FObj SFSF a) (FObj SFSF b ) → Hom A a b | |
18 full→ : { a b : Obj A } { x : Hom A (FObj SFSF a) (FObj SFSF b) } → A [ FMap SFSF ( SFSFMap← x ) ≈ x ] | |
632 | 19 full← : { a b : Obj A } { x : Hom A (FObj SFSF a) (FObj SFSF b) } → A [ SFSFMap← ( FMap SFSF x ) ≈ x ] |
442 | 20 |
21 -- ≈→≡ : {a b : Obj A } → { x y : Hom A (FObj SFSF a) (FObj SFSF b) } → | |
22 -- (x≈y : A [ FMap SFSF x ≈ FMap SFSF y ]) → FMap SFSF x ≡ FMap SFSF y -- codomain of FMap is local small | |
305 | 23 |
309
e213595b845e
preinitial problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
308
diff
changeset
|
24 -- pre-initial |
e213595b845e
preinitial problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
308
diff
changeset
|
25 |
311 | 26 record PreInitial {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
629 | 27 (F : Functor A A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where |
308 | 28 field |
629 | 29 preinitialObj : Obj A |
30 preinitialArrow : ∀{a : Obj A } → Hom A ( FObj F preinitialObj ) a | |
309
e213595b845e
preinitial problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
308
diff
changeset
|
31 |
e213595b845e
preinitial problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
308
diff
changeset
|
32 -- initial object |
671 | 33 -- now in cat-utility |
34 -- record HasInitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (i : Obj A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where | |
35 -- field | |
36 -- initial : ∀( a : Obj A ) → Hom A i a | |
37 -- uniqueness : { a : Obj A } → ( f : Hom A i a ) → A [ f ≈ initial a ] | |
309
e213595b845e
preinitial problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
308
diff
changeset
|
38 |
315 | 39 -- A complete catagory has initial object if it has PreInitial-SmallFullSubcategory |
309
e213595b845e
preinitial problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
308
diff
changeset
|
40 |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
311
diff
changeset
|
41 open NTrans |
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
311
diff
changeset
|
42 open Limit |
487 | 43 open IsLimit |
313 | 44 open SmallFullSubcategory |
45 open PreInitial | |
440 | 46 open Complete |
47 open Equalizer | |
443 | 48 open IsEqualizer |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
311
diff
changeset
|
49 |
309
e213595b845e
preinitial problem written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
308
diff
changeset
|
50 initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
440 | 51 (comp : Complete A A) |
442 | 52 (SFS : SmallFullSubcategory A ) → |
629 | 53 (PI : PreInitial A (SFSF SFS )) → HasInitialObject A (limit-c comp (SFSF SFS)) |
442 | 54 initialFromPreInitialFullSubcategory A comp SFS PI = record { |
314 | 55 initial = initialArrow ; |
636 | 56 uniqueness = λ {a} f → lemma1 a f |
312
702adc45704f
is this right direction?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
311
diff
changeset
|
57 } where |
442 | 58 F : Functor A A |
59 F = SFSF SFS | |
60 FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b | |
61 FMap← = SFSFMap← SFS | |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
62 a00 : Obj A |
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
63 a00 = limit-c comp F |
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
64 lim : ( Γ : Functor A A ) → Limit A A Γ |
487 | 65 lim Γ = climit comp Γ |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
66 u : NTrans A A (K A A a00) F |
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
67 u = t0 ( lim F ) |
443 | 68 equ : {a b : Obj A} → (f g : Hom A a b) → IsEqualizer A (equalizer-e comp f g ) f g |
672 | 69 equ f g = isEqualizer ( Complete.cequalizer comp f g ) |
442 | 70 ep : {a b : Obj A} → {f g : Hom A a b} → Obj A |
71 ep {a} {b} {f} {g} = equalizer-p comp f g | |
72 ee : {a b : Obj A} → {f g : Hom A a b} → Hom A (ep {a} {b} {f} {g} ) a | |
73 ee {a} {b} {f} {g} = equalizer-e comp f g | |
617
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
74 f : Hom A a00 (FObj F (preinitialObj PI ) ) |
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
75 f = TMap u (preinitialObj PI ) |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
76 initialArrow : ∀( a : Obj A ) → Hom A a00 a |
437 | 77 initialArrow a = A [ preinitialArrow PI {a} o f ] |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
78 equ-fi : { a : Obj A} → {f' : Hom A a00 a} → |
443 | 79 IsEqualizer A ee ( A [ preinitialArrow PI {a} o f ] ) f' |
440 | 80 equ-fi {a} {f'} = equ ( A [ preinitialArrow PI {a} o f ] ) f' |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
81 e=id : {e : Hom A a00 a00} → ( {c : Obj A} → A [ A [ TMap u c o e ] ≈ TMap u c ] ) → A [ e ≈ id1 A a00 ] |
438 | 82 e=id {e} uce=uc = let open ≈-Reasoning (A) in |
437 | 83 begin |
84 e | |
495 | 85 ≈↑⟨ limit-uniqueness (isLimit (lim F)) ( λ {i} → uce=uc ) ⟩ |
487 | 86 limit (isLimit (lim F)) a00 u |
495 | 87 ≈⟨ limit-uniqueness (isLimit (lim F)) ( λ {i} → idR ) ⟩ |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
88 id1 A a00 |
437 | 89 ∎ |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
90 kfuc=uc : {c k1 : Obj A} → {p : Hom A k1 a00} → A [ A [ TMap u c o |
440 | 91 A [ p o A [ preinitialArrow PI {k1} o TMap u (preinitialObj PI) ] ] ] |
92 ≈ TMap u c ] | |
441
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
93 kfuc=uc {c} {k1} {p} = let open ≈-Reasoning (A) in |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
94 begin |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
95 TMap u c o ( p o ( preinitialArrow PI {k1} o TMap u (preinitialObj PI) )) |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
96 ≈⟨ cdr assoc ⟩ |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
97 TMap u c o ((p o preinitialArrow PI) o TMap u (preinitialObj PI)) |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
98 ≈⟨ assoc ⟩ |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
99 (TMap u c o ( p o ( preinitialArrow PI {k1} ))) o TMap u (preinitialObj PI) |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
100 ≈↑⟨ car ( full→ SFS ) ⟩ |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
101 FMap F (FMap← (TMap u c o p o preinitialArrow PI)) o TMap u (preinitialObj PI) |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
102 ≈⟨ nat u ⟩ |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
103 TMap u c o FMap (K A A a00) (FMap← (TMap u c o p o preinitialArrow PI)) |
441
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
104 ≈⟨⟩ |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
105 TMap u c o id1 A a00 |
441
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
106 ≈⟨ idR ⟩ |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
107 TMap u c |
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
108 ∎ |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
109 kfuc=1 : {k1 : Obj A} → {p : Hom A k1 a00} → A [ A [ p o A [ preinitialArrow PI {k1} o TMap u (preinitialObj PI) ] ] ≈ id1 A a00 ] |
439 | 110 kfuc=1 {k1} {p} = e=id ( kfuc=uc ) |
435
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
111 -- if equalizer has right inverse, f = g |
438 | 112 lemma2 : (a b : Obj A) {c : Obj A} ( f g : Hom A a b ) |
443 | 113 {e : Hom A c a } {e' : Hom A a c } ( equ : IsEqualizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) |
442 | 114 → A [ f ≈ g ] |
438 | 115 lemma2 a b {c} f g {e} {e'} equ inv-e = let open ≈-Reasoning (A) in |
435
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
116 let open Equalizer in |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
117 begin |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
118 f |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
119 ≈↑⟨ idR ⟩ |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
120 f o id1 A a |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
121 ≈↑⟨ cdr inv-e ⟩ |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
122 f o ( e o e' ) |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
123 ≈⟨ assoc ⟩ |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
124 ( f o e ) o e' |
441
61550782be4a
preinital full subcategory done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
440
diff
changeset
|
125 ≈⟨ car ( fe=ge equ ) ⟩ ( g o e ) o e' |
435
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
126 ≈↑⟨ assoc ⟩ |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
127 g o ( e o e' ) |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
128 ≈⟨ cdr inv-e ⟩ |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
129 g o id1 A a |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
130 ≈⟨ idR ⟩ |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
131 g |
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
132 ∎ |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
133 lemma1 : (a : Obj A) (f' : Hom A a00 a) → A [ f' ≈ initialArrow a ] |
438 | 134 lemma1 a f' = let open ≈-Reasoning (A) in |
436
ef37decef1ca
initialFullSubCategory
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
435
diff
changeset
|
135 sym ( |
ef37decef1ca
initialFullSubCategory
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
435
diff
changeset
|
136 begin |
ef37decef1ca
initialFullSubCategory
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
435
diff
changeset
|
137 initialArrow a |
ef37decef1ca
initialFullSubCategory
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
435
diff
changeset
|
138 ≈⟨⟩ |
440 | 139 preinitialArrow PI {a} o f |
484
fcae3025d900
fix Limit pu a0 and t0 in record definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
481
diff
changeset
|
140 ≈⟨ lemma2 a00 a (A [ preinitialArrow PI {a} o f ]) f' {ee {a00} {a} {A [ preinitialArrow PI {a} o f ]} {f'} } (equ-fi ) |
442 | 141 (kfuc=1 {ep} {ee} ) ⟩ |
438 | 142 f' |
436
ef37decef1ca
initialFullSubCategory
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
435
diff
changeset
|
143 ∎ ) |
435
9f014f34b988
f=g if equalizer k has right inverse
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
350
diff
changeset
|
144 |
481
65e6906782bb
Completeness of Comma Category begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
145 |
65e6906782bb
Completeness of Comma Category begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
460
diff
changeset
|
146 |