Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate HOD.agda @ 142:c30bc9f5bd0d
Power Set
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Jul 2019 12:13:19 +0900 |
parents | 21b2654985c4 |
children | 21b9e78e9359 |
rev | line source |
---|---|
16 | 1 open import Level |
112 | 2 module HOD where |
3 | 3 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
4 open import zf |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
5 open import ordinal |
23 | 6 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
7 open import Relation.Binary.PropositionalEquality |
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
8 open import Data.Nat.Properties |
6 | 9 open import Data.Empty |
10 open import Relation.Nullary | |
11 open import Relation.Binary | |
12 open import Relation.Binary.Core | |
13 | |
27 | 14 -- Ordinal Definable Set |
11 | 15 |
141 | 16 record OD {n : Level} : Set (suc n) where |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
17 field |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
18 def : (x : Ordinal {n} ) → Set n |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
19 |
141 | 20 open OD |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
21 open import Data.Unit |
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
22 |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
23 open Ordinal |
120 | 24 open _∧_ |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
25 |
141 | 26 record _==_ {n : Level} ( a b : OD {n} ) : Set n where |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
27 field |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
28 eq→ : ∀ { x : Ordinal {n} } → def a x → def b x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
29 eq← : ∀ { x : Ordinal {n} } → def b x → def a x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
30 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
31 id : {n : Level} {A : Set n} → A → A |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
32 id x = x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
33 |
141 | 34 eq-refl : {n : Level} { x : OD {n} } → x == x |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
35 eq-refl {n} {x} = record { eq→ = id ; eq← = id } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
36 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
37 open _==_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
38 |
141 | 39 eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
40 eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
41 |
141 | 42 eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
43 eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
44 |
141 | 45 ⇔→== : {n : Level} { x y : OD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y |
120 | 46 eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m |
47 eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m | |
48 | |
141 | 49 -- Ordinal in OD ( and ZFSet ) |
50 Ord : { n : Level } → ( a : Ordinal {n} ) → OD {n} | |
140
312e27aa3cb5
remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
139
diff
changeset
|
51 Ord {n} a = record { def = λ y → y o< a } |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
52 |
141 | 53 od∅ : {n : Level} → OD {n} |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
54 od∅ {n} = Ord o∅ |
40 | 55 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
56 postulate |
141 | 57 -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) |
58 od→ord : {n : Level} → OD {n} → Ordinal {n} | |
59 ord→od : {n : Level} → Ordinal {n} → OD {n} | |
60 c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y | |
61 oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x | |
113 | 62 diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x |
116 | 63 ord-Ord :{n : Level} {x : Ordinal {n}} → x ≡ od→ord (Ord x) |
141 | 64 ==→o≡ : {n : Level} → { x y : OD {suc n} } → (x == y) → x ≡ y |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
65 -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set |
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
66 -- o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x |
100 | 67 -- supermum as Replacement Axiom |
95 | 68 sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} |
98 | 69 sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ |
111 | 70 -- contra-position of mimimulity of supermum required in Power Set Axiom |
98 | 71 sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} |
72 sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) | |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
73 -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) |
141 | 74 minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} |
117 | 75 -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) |
141 | 76 x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) |
77 minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) | |
123 | 78 -- we should prove this in agda, but simply put here |
141 | 79 ===-≡ : {n : Level} { x y : OD {suc n}} → x == y → x ≡ y |
123 | 80 |
81 Ord-ord : {n : Level } {ox : Ordinal {suc n}} → Ord ox ≡ ord→od ox | |
82 Ord-ord {n} {px} = trans (sym oiso) (cong ( λ k → ord→od k ) (sym ord-Ord)) | |
95 | 83 |
142 | 84 Ord-ord-≡ : {n : Level } {t : OD {suc n}} → Ord (od→ord t) ≡ t |
85 Ord-ord-≡ {n} {t} = subst₂ (λ k j → k ≡ j ) oiso oiso (cong (λ k → ord→od k) (sym ord-Ord)) | |
86 | |
141 | 87 _∋_ : { n : Level } → ( a x : OD {n} ) → Set n |
95 | 88 _∋_ {n} a x = def a ( od→ord x ) |
89 | |
141 | 90 _c<_ : { n : Level } → ( x a : OD {n} ) → Set n |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
91 x c< a = a ∋ x |
103 | 92 |
141 | 93 _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) |
95 | 94 a c≤ b = (a ≡ b) ∨ ( b ∋ a ) |
95 | |
141 | 96 cseq : {n : Level} → OD {n} → OD {n} |
140
312e27aa3cb5
remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
139
diff
changeset
|
97 cseq x = record { def = λ y → def x (osuc y) } where |
113 | 98 |
141 | 99 def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x |
95 | 100 def-subst df refl refl = df |
101 | |
113 | 102 o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → Ord y ∋ Ord x |
103 o<→c< {n} {x} {y} lt = subst ( λ k → k o< y ) ord-Ord lt | |
104 | |
141 | 105 sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
106 sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) ) |
95 | 107 |
141 | 108 sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → def ( sup-od ψ ) (od→ord ( ψ x )) |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
109 sup-c< {n} ψ {x} = def-subst {n} {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )} |
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
110 lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where |
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
111 lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x))) |
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
112 lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) ) |
28 | 113 |
123 | 114 o<→o> : {n : Level} → { x y : Ordinal {n} } → (Ord x == Ord y) → x o< y → ⊥ |
115 o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with o<-subst (yx (case1 lt)) ord-Ord refl | |
116 ... | oyx with o<¬≡ refl (c<→o< {n} {Ord x} oyx ) | |
117 ... | () | |
118 o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with o<-subst (yx (case2 lt)) ord-Ord refl | |
119 ... | oyx with o<¬≡ refl (c<→o< {n} {Ord x} oyx ) | |
120 ... | () | |
121 | |
122 Ord==→≡ : {n : Level} { x y : Ordinal {suc n}} → Ord x == Ord y → x ≡ y | |
123 Ord==→≡ {n} {x} {y} eq with trio< x y | |
124 Ord==→≡ {n} {x} {y} eq | tri< a ¬b ¬c = ⊥-elim ( o<→o> eq a ) | |
125 Ord==→≡ {n} {x} {y} eq | tri≈ ¬a b ¬c = b | |
126 Ord==→≡ {n} {x} {y} eq | tri> ¬a ¬b c = ⊥-elim ( o<→o> (eq-sym eq) c ) | |
127 | |
142 | 128 otrans : {n : Level} {a x : Ordinal {n} } → def (Ord a) x → { y : Ordinal {n} } → y o< x → def (Ord a) y |
129 otrans {n} {a} {x} x<a {y} y<x = ordtrans y<x x<a | |
123 | 130 |
37 | 131 ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n} |
81 | 132 ∅3 {n} {x} = TransFinite {n} c2 c3 x where |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
133 c0 : Nat → Ordinal {n} → Set n |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
134 c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n} |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
135 c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
136 c2 Zero not = refl |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
137 c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
138 ... | t with t (case1 ≤-refl ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
139 c2 (Suc lx) not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
140 c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ }) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
141 c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
142 ... | t with t (case2 Φ< ) |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
143 c3 lx (Φ .lx) d not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
144 c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } ) |
34 | 145 ... | t with t (case2 (s< s<refl ) ) |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
146 c3 lx (OSuc .lx x₁) d not | t | () |
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
147 |
57 | 148 ∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x |
149 ∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl) | |
150 ∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ< | |
151 ∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n) | |
37 | 152 |
46 | 153 ord-iso : {n : Level} {y : Ordinal {n} } → record { lv = lv (od→ord (ord→od y)) ; ord = ord (od→ord (ord→od y)) } ≡ record { lv = lv y ; ord = ord y } |
154 ord-iso = cong ( λ k → record { lv = lv k ; ord = ord k } ) diso | |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
155 |
51 | 156 -- avoiding lv != Zero error |
141 | 157 orefl : {n : Level} → { x : OD {n} } → { y : Ordinal {n} } → od→ord x ≡ y → od→ord x ≡ y |
51 | 158 orefl refl = refl |
159 | |
141 | 160 ==-iso : {n : Level} → { x y : OD {n} } → ord→od (od→ord x) == ord→od (od→ord y) → x == y |
51 | 161 ==-iso {n} {x} {y} eq = record { |
162 eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ; | |
163 eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) } | |
164 where | |
141 | 165 lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z |
51 | 166 lemma {x} {z} d = def-subst d oiso refl |
167 | |
141 | 168 =-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y) |
57 | 169 =-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso) |
170 | |
141 | 171 ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y |
51 | 172 ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where |
173 lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy) | |
174 lemma ox ox refl = eq-refl | |
175 | |
176 o≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ord→od x == ord→od y | |
177 o≡→== {n} {x} {.x} refl = eq-refl | |
178 | |
179 >→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) | |
180 >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x | |
181 | |
141 | 182 c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x |
51 | 183 c≤-refl x = case1 refl |
184 | |
141 | 185 ∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a |
91 | 186 ∋→o< {n} {a} {x} lt = t where |
187 t : (od→ord x) o< (od→ord a) | |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
188 t = c<→o< {suc n} {x} {a} lt |
91 | 189 |
80 | 190 o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} |
191 o∅≡od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (od∅ {suc n} )) | |
192 o∅≡od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where | |
193 lemma : o∅ {suc n } o< (od→ord (od∅ {suc n} )) → ⊥ | |
113 | 194 lemma lt with o<→c< lt |
195 lemma lt | t = o<¬≡ refl t | |
80 | 196 o∅≡od∅ {n} | tri≈ ¬a b ¬c = trans (cong (λ k → ord→od k ) b ) oiso |
197 o∅≡od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) | |
198 | |
141 | 199 o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
200 o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where |
51 | 201 |
141 | 202 o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y |
111 | 203 o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) |
54 | 204 |
140
312e27aa3cb5
remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
139
diff
changeset
|
205 ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ } == od∅ {n} |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
206 eq→ ∅0 {w} (lift ()) |
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
207 eq← ∅0 {w} (case1 ()) |
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
208 eq← ∅0 {w} (case2 ()) |
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
209 |
141 | 210 ∅< : {n : Level} → { x y : OD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
211 ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d |
60 | 212 ∅< {n} {x} {y} d eq | lift () |
57 | 213 |
141 | 214 ∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox |
120 | 215 ∅6 {n} {x} x∋x = o<¬≡ refl ( c<→o< {suc n} {x} {x} x∋x ) |
51 | 216 |
141 | 217 def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x |
76 | 218 def-iso refl t = t |
219 | |
57 | 220 is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) |
221 is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl | |
222 is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) | |
223 is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) | |
224 | |
119 | 225 |
79 | 226 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) |
94 | 227 -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) |
59
d13d1351a1fa
lemma = cong₂ (λ x not → minimul x not ) oiso { }6
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
58
diff
changeset
|
228 |
141 | 229 csuc : {n : Level} → OD {suc n} → OD {suc n} |
122 | 230 csuc x = Ord ( osuc ( od→ord x )) |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
231 |
141 | 232 in-codomain : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n} |
233 in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (Ord y ))))) } | |
234 | |
96 | 235 -- Power Set of X ( or constructible by λ y → def X (od→ord y ) |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
236 |
141 | 237 ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n} |
140
312e27aa3cb5
remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
139
diff
changeset
|
238 ZFSubset A x = record { def = λ y → def A y ∧ def x y } where |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
239 |
141 | 240 Def : {n : Level} → (A : OD {suc n}) → OD {suc n} |
121 | 241 Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) |
96 | 242 |
129 | 243 OrdSubset : {n : Level} → (A x : Ordinal {suc n} ) → ZFSubset (Ord A) (Ord x) ≡ Ord ( minα A x ) |
244 OrdSubset {n} A x = ===-≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where | |
245 lemma1 : {y : Ordinal} → def (ZFSubset (Ord A) (Ord x)) y → def (Ord (minα A x)) y | |
246 lemma1 {y} s with trio< A x | |
247 lemma1 {y} s | tri< a ¬b ¬c = proj1 s | |
248 lemma1 {y} s | tri≈ ¬a refl ¬c = proj1 s | |
249 lemma1 {y} s | tri> ¬a ¬b c = proj2 s | |
250 lemma2 : {y : Ordinal} → def (Ord (minα A x)) y → def (ZFSubset (Ord A) (Ord x)) y | |
251 lemma2 {y} lt with trio< A x | |
252 lemma2 {y} lt | tri< a ¬b ¬c = record { proj1 = lt ; proj2 = ordtrans lt a } | |
253 lemma2 {y} lt | tri≈ ¬a refl ¬c = record { proj1 = lt ; proj2 = lt } | |
254 lemma2 {y} lt | tri> ¬a ¬b c = record { proj1 = ordtrans lt c ; proj2 = lt } | |
255 | |
96 | 256 -- Constructible Set on α |
122 | 257 -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x } |
258 -- L (Φ 0) = Φ | |
259 -- L (OSuc lv n) = { Def ( L n ) } | |
260 -- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) ) | |
141 | 261 L : {n : Level} → (α : Ordinal {suc n}) → OD {suc n} |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
262 L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ |
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
263 L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) |
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
264 L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) |
121 | 265 cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx })))) |
89 | 266 |
123 | 267 L00 : {n : Level} → (ox : Ordinal {suc n}) → ox o< sup-o ( λ x → od→ord ( ZFSubset (Ord ox) (ord→od x ))) |
268 L00 {n} ox = o<-subst {suc n} {_} {_} {ox} {sup-o ( λ x → od→ord ( ZFSubset (Ord ox) (ord→od x )))} | |
269 (sup-o< {suc n} {λ x → od→ord ( ZFSubset (Ord ox) (ord→od x ))} {ox} ) (lemma0 ox) refl where | |
270 lemma1 : {n : Level } {ox z : Ordinal {suc n}} → ( def (Ord ox) z ∧ def (ord→od ox) z ) ⇔ def ( Ord ox ) z | |
271 lemma1 {n} {ox} {z} = record { proj1 = proj1 ; proj2 = λ t → record { proj1 = t ; proj2 = subst (λ k → def k z ) Ord-ord t }} | |
122 | 272 lemma0 : {n : Level} → (ox : Ordinal {suc n}) → od→ord (ZFSubset (Ord ox) (ord→od ox)) ≡ ox |
123 | 273 lemma0 {n} ox = trans (cong (λ k → od→ord k) (===-≡ (⇔→== lemma1) )) (sym ord-Ord) |
122 | 274 |
123 | 275 -- L0 : {n : Level} → (α : Ordinal {suc n}) → α o< β → L (osuc α) ∋ L α |
141 | 276 -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x |
122 | 277 |
111 | 278 omega : { n : Level } → Ordinal {n} |
279 omega = record { lv = Suc Zero ; ord = Φ 1 } | |
280 | |
141 | 281 OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} |
282 OD→ZF {n} = record { | |
283 ZFSet = OD {suc n} | |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
284 ; _∋_ = _∋_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
285 ; _≈_ = _==_ |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
286 ; ∅ = od∅ |
28 | 287 ; _,_ = _,_ |
288 ; Union = Union | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
289 ; Power = Power |
28 | 290 ; Select = Select |
291 ; Replace = Replace | |
111 | 292 ; infinite = Ord omega |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
293 ; isZF = isZF |
28 | 294 } where |
141 | 295 Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → Set (suc n) ) → OD {suc n} |
140
312e27aa3cb5
remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
139
diff
changeset
|
296 Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } |
141 | 297 Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} |
298 Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x } | |
299 _,_ : OD {suc n} → OD {suc n} → OD {suc n} | |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
300 x , y = Ord (omax (od→ord x) (od→ord y)) |
141 | 301 Union : OD {suc n} → OD {suc n} |
113 | 302 Union U = cseq U |
77 | 303 -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) |
141 | 304 ZFSet = OD {suc n} |
54 | 305 _∈_ : ( A B : ZFSet ) → Set (suc n) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
306 A ∈ B = B ∋ A |
54 | 307 _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
308 _⊆_ A B {x} = A ∋ x → B ∋ x |
103 | 309 _∩_ : ( A B : ZFSet ) → ZFSet |
142 | 310 A ∩ B = record { def = λ x → def A x ∧ def B x } -- Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) |
141 | 311 Power : OD {suc n} → OD {suc n} |
129 | 312 Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) |
96 | 313 -- _∪_ : ( A B : ZFSet ) → ZFSet |
314 -- A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) | |
103 | 315 {_} : ZFSet → ZFSet |
316 { x } = ( x , x ) | |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
317 |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
318 infixr 200 _∈_ |
96 | 319 -- infixr 230 _∩_ _∪_ |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
320 infixr 220 _⊆_ |
141 | 321 isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (Ord omega) |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
322 isZF = record { |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
323 isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
324 ; pair = pair |
118 | 325 ; union-u = λ X z UX∋z → union-u {X} {z} UX∋z |
72 | 326 ; union→ = union→ |
327 ; union← = union← | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
328 ; empty = empty |
129 | 329 ; power→ = power→ |
76 | 330 ; power← = power← |
331 ; extensionality = extensionality | |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
332 ; minimul = minimul |
51 | 333 ; regularity = regularity |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
334 ; infinity∅ = infinity∅ |
93 | 335 ; infinity = λ _ → infinity |
116 | 336 ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} |
135 | 337 ; replacement← = replacement← |
338 ; replacement→ = replacement→ | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
339 } where |
129 | 340 |
141 | 341 pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) |
87 | 342 proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) |
343 proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) | |
129 | 344 |
141 | 345 empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
346 empty x (case1 ()) |
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
347 empty x (case2 ()) |
129 | 348 |
100 | 349 --- |
350 --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A | |
351 --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A | |
352 -- | |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
353 -- if Power A ∋ t, from a propertiy of minimum sup there is osuc ZFSubset A ∋ t |
100 | 354 -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x |
128 | 355 -- In case of later, ZFSubset A ∋ t and t ∋ x implies A ∋ x by transitivity |
100 | 356 -- |
141 | 357 POrd : {a : Ordinal } {t : OD} → Def (Ord a) ∋ t → Def (Ord a) ∋ Ord (od→ord t) |
129 | 358 POrd {a} {t} P∋t = o<→c< P∋t |
142 | 359 ∩-≡ : { a b : OD {suc n} } → ({x : OD {suc n} } → (a ∋ x → b ∋ x)) → a == ( b ∩ a ) |
360 ∩-≡ {a} {b} inc = record { | |
361 eq→ = λ {x} x<a → record { proj2 = x<a ; | |
362 proj1 = def-subst {suc n} {_} {_} {b} {x} (inc (def-subst {suc n} {_} {_} {a} {_} x<a refl (sym diso) )) refl diso } ; | |
363 eq← = λ {x} x<a∩b → proj2 x<a∩b } | |
141 | 364 ord-power→ : (a : Ordinal ) ( t : OD) → Def (Ord a) ∋ t → {x : OD} → t ∋ x → Ord a ∋ x |
129 | 365 ord-power→ a t P∋t {x} t∋x with osuc-≡< (sup-lb (POrd P∋t)) |
127 | 366 ... | case1 eq = proj1 (def-subst (Ltx t∋x) (sym (subst₂ (λ j k → j ≡ k ) oiso oiso ( cong (λ k → ord→od k) (sym eq) ))) refl ) where |
141 | 367 Ltx : {n : Level} → {x t : OD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x |
127 | 368 Ltx {n} {x} {t} lt = c<→o< lt |
142 | 369 ... | case2 lt = lemma3 where |
129 | 370 sp = sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x))) |
141 | 371 minsup : OD |
129 | 372 minsup = ZFSubset (Ord a) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x))))) |
141 | 373 Ltx : {n : Level} → {x t : OD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x |
127 | 374 Ltx {n} {x} {t} lt = c<→o< lt |
130 | 375 -- lemma1 hold because minsup is Ord (minα a sp) |
127 | 376 lemma1 : od→ord (Ord (od→ord t)) o< od→ord minsup → minsup ∋ Ord (od→ord t) |
129 | 377 lemma1 lt with OrdSubset a ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x)))) |
378 ... | eq with subst ( λ k → ZFSubset (Ord a) k ≡ Ord (minα a sp)) Ord-ord eq | |
379 ... | eq1 = def-subst {suc n} {_} {_} {minsup} {od→ord (Ord (od→ord t))} (o<→c< lt) lemma2 (sym ord-Ord) where | |
380 lemma2 : Ord (od→ord (ZFSubset (Ord a) (ord→od sp))) ≡ minsup | |
381 lemma2 = let open ≡-Reasoning in begin | |
382 Ord (od→ord (ZFSubset (Ord a) (ord→od sp))) | |
383 ≡⟨ cong (λ k → Ord (od→ord k)) eq1 ⟩ | |
384 Ord (od→ord (Ord (minα a sp))) | |
385 ≡⟨ cong (λ k → Ord (od→ord k)) Ord-ord ⟩ | |
386 Ord (od→ord (ord→od (minα a sp))) | |
387 ≡⟨ cong (λ k → Ord k) diso ⟩ | |
388 Ord (minα a sp) | |
389 ≡⟨ sym eq1 ⟩ | |
390 minsup | |
391 ∎ | |
142 | 392 lemma3 : od→ord x o< a |
393 lemma3 = otrans (proj1 (lemma1 lt) ) (c<→o< {suc n} {x} {Ord (od→ord t)} (Ltx t∋x) ) | |
100 | 394 -- |
395 -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t | |
396 -- Power A is a sup of ZFSubset A t, so Power A ∋ t | |
397 -- | |
141 | 398 ord-power← : (a : Ordinal ) (t : OD) → ({x : OD} → (t ∋ x → (Ord a) ∋ x)) → Def (Ord a) ∋ t |
129 | 399 ord-power← a t t→A = def-subst {suc n} {_} {_} {Def (Ord a)} {od→ord t} |
127 | 400 lemma refl (lemma1 lemma-eq )where |
129 | 401 lemma-eq : ZFSubset (Ord a) t == t |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
402 eq→ lemma-eq {z} w = proj2 w |
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
403 eq← lemma-eq {z} w = record { proj2 = w ; |
129 | 404 proj1 = def-subst {suc n} {_} {_} {(Ord a)} {z} |
126 | 405 ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } |
141 | 406 lemma1 : {n : Level } {a : Ordinal {suc n}} { t : OD {suc n}} |
129 | 407 → (eq : ZFSubset (Ord a) t == t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t |
408 lemma1 {n} {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (===-≡ eq )) | |
409 lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x))) | |
98 | 410 lemma = sup-o< |
129 | 411 |
141 | 412 union-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} |
118 | 413 union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) ) |
141 | 414 union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z |
118 | 415 union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) |
416 union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) | |
417 union→ X z u xx | tri< a ¬b ¬c | () | |
122 | 418 union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b |
142 | 419 union→ X z u xx | tri> ¬a ¬b c = {!!} --- osuc ( od→ord z )) o< od→ord u o< od→ord X |
420 | |
141 | 421 union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z ) |
118 | 422 union← X z X∋z = record { proj1 = lemma ; proj2 = <-osuc } where |
423 lemma : X ∋ union-u {X} {z} X∋z | |
424 lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} X∋z refl ord-Ord | |
129 | 425 |
141 | 426 ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y |
427 ψiso {ψ} t refl = t | |
428 selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) | |
429 selection {ψ} {X} {y} = record { | |
430 proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } | |
431 ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } | |
432 } | |
433 replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x | |
434 replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where | |
435 lemma : def (in-codomain X ψ) (od→ord (ψ x)) | |
436 lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) | |
437 (sym (subst (λ k → Ord (od→ord x) ≡ k) oiso (Ord-ord) )) } )) | |
438 replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y)) | |
439 replacement→ {ψ} X x lt = contra-position lemma (lemma2 (proj2 lt)) where | |
440 lemma2 : ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (Ord y)))) | |
441 → ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y))) | |
442 lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where | |
443 lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (Ord y))) → (ord→od (od→ord x) == ψ (Ord y)) | |
444 lemma3 {y} eq = subst (λ k → ord→od (od→ord x) == k ) oiso (o≡→== eq ) | |
445 lemma : ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y)) ) | |
446 lemma not y not2 = not (Ord y) (subst (λ k → k == ψ (Ord y)) oiso ( proj2 not2 )) | |
129 | 447 |
142 | 448 -- Power A = Replace (Def (Ord (od→ord A))) ( λ y → A ∩ y ) |
449 power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x | |
450 power→ A t P∋t {x} t∋x = TransFiniteExists {suc n} {λ y → (t == (A ∩ ord→od y))} | |
451 lemma4 lemma5 where | |
452 a = od→ord A | |
453 lemma2 : ¬ ( (y : OD) → ¬ (t == (A ∩ y))) | |
454 lemma2 = replacement→ (Def (Ord (od→ord A))) t P∋t | |
455 lemma3 : (y : OD) → t == ( A ∩ y ) → A ∋ x | |
456 lemma3 y eq = proj1 (eq→ eq t∋x) | |
457 lemma4 : ¬ ((y : Ordinal) → ¬ (t == (A ∩ ord→od y))) | |
458 lemma4 not = lemma2 ( λ y not1 → not (od→ord y) (subst (λ k → t == ( A ∩ k )) (sym oiso) not1 )) | |
459 lemma5 : {y : Ordinal} → t == (A ∩ ord→od y) → def A (od→ord x) | |
460 lemma5 {y} eq = lemma3 (ord→od y) eq | |
461 power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t | |
462 power← A t t→A = record { proj1 = lemma1 ; proj2 = lemma2 } where | |
463 a = od→ord A | |
464 lemma0 : {x : OD} → t ∋ x → Ord a ∋ x | |
465 lemma0 {x} t∋x = c<→o< (t→A t∋x) | |
466 lemma3 : Def (Ord a) ∋ t | |
467 lemma3 = ord-power← a t lemma0 | |
468 lemma1 : od→ord t o< sup-o (λ x → od→ord (A ∩ ord→od x)) | |
469 lemma1 with sup-o< {suc n} {λ x → od→ord (A ∩ ord→od x)} {{!!}} | |
470 ... | lt = {!!} | |
471 lemma2 : def (in-codomain (Def (Ord (od→ord A))) (_∩_ A)) (od→ord t) | |
472 lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma4 }) ) where | |
473 lemma4 : od→ord t ≡ od→ord (A ∩ Ord (od→ord t)) | |
474 lemma4 = cong ( λ k → od→ord k ) ( ===-≡ (subst (λ k → t == (A ∩ k)) (sym Ord-ord-≡) (∩-≡ t→A ) )) | |
475 | |
141 | 476 ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) |
60 | 477 ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq |
141 | 478 regularity : (x : OD) (not : ¬ (x == od∅)) → |
115 | 479 (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) |
117 | 480 proj1 (regularity x not ) = x∋minimul x not |
481 proj2 (regularity x not ) = record { eq→ = lemma1 ; eq← = λ {y} d → lemma2 {y} d } where | |
482 lemma1 : {x₁ : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ → def od∅ x₁ | |
483 lemma1 {x₁} s = ⊥-elim ( minimul-1 x not (ord→od x₁) lemma3 ) where | |
484 lemma3 : def (minimul x not) (od→ord (ord→od x₁)) ∧ def x (od→ord (ord→od x₁)) | |
142 | 485 lemma3 = record { proj1 = def-subst {suc n} {_} {_} {minimul x not} {_} (proj1 s) refl (sym diso) |
486 ; proj2 = proj2 (proj2 s) } | |
117 | 487 lemma2 : {x₁ : Ordinal} → def od∅ x₁ → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ |
488 lemma2 {y} d = ⊥-elim (empty (ord→od y) (def-subst {suc n} {_} {_} {od∅} {od→ord (ord→od y)} d refl (sym diso) )) | |
129 | 489 |
141 | 490 extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B |
76 | 491 eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d |
492 eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d | |
129 | 493 |
119 | 494 open import Relation.Binary.PropositionalEquality |
141 | 495 uxxx-ord : {x : OD {suc n}} → {y : Ordinal {suc n}} → def (Union (x , (x , x))) y ⇔ ( y o< osuc (od→ord x) ) |
119 | 496 uxxx-ord {x} {y} = subst (λ k → k ⇔ ( y o< osuc (od→ord x) )) (sym lemma) ( osuc2 y (od→ord x)) where |
497 lemma : {y : Ordinal {suc n}} → def (Union (x , (x , x))) y ≡ osuc y o< osuc (osuc (od→ord x)) | |
498 lemma {y} = let open ≡-Reasoning in begin | |
499 def (Union (x , (x , x))) y | |
500 ≡⟨⟩ | |
501 def ( Ord ( omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) ))) ( osuc y ) | |
502 ≡⟨⟩ | |
503 osuc y o< omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) ) | |
504 ≡⟨ cong (λ k → osuc y o< omax (od→ord x) k ) (sym ord-Ord) ⟩ | |
505 osuc y o< omax (od→ord x) (omax (od→ord x) (od→ord x) ) | |
506 ≡⟨ cong (λ k → osuc y o< k ) (omxxx (od→ord x) ) ⟩ | |
507 osuc y o< osuc (osuc (od→ord x)) | |
508 ∎ | |
141 | 509 infinite : OD {suc n} |
111 | 510 infinite = Ord omega |
511 infinity∅ : Ord omega ∋ od∅ {suc n} | |
119 | 512 infinity∅ = o<-subst (case1 (s≤s z≤n) ) ord-Ord refl |
141 | 513 infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) |
120 | 514 infinity x lt = o<-subst ( lemma (od→ord x) lt ) eq refl where |
515 eq : osuc (od→ord x) ≡ od→ord (Union (x , (x , x))) | |
516 eq = let open ≡-Reasoning in begin | |
517 osuc (od→ord x) | |
518 ≡⟨ ord-Ord ⟩ | |
519 od→ord (Ord (osuc (od→ord x))) | |
520 ≡⟨ cong ( λ k → od→ord k ) ( sym (==→o≡ ( ⇔→== uxxx-ord ))) ⟩ | |
521 od→ord (Union (x , (x , x))) | |
522 ∎ | |
91 | 523 lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega |
524 lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) | |
525 lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n) | |
526 lemma record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } (case1 (s≤s ())) | |
527 lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ())) | |
528 lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2 | |
529 lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl | |
103 | 530 -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] -- this form is no good since X is a transitive set |
531 -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] | |
141 | 532 record Choice (z : OD {suc n}) : Set (suc (suc n)) where |
103 | 533 field |
141 | 534 u : {x : OD {suc n}} ( x∈z : x ∈ z ) → OD {suc n} |
535 t : {x : OD {suc n}} ( x∈z : x ∈ z ) → (x : OD {suc n} ) → OD {suc n} | |
536 choice : { x : OD {suc n} } → ( x∈z : x ∈ z ) → ( u x∈z ∩ x) == { t x∈z x } | |
537 -- choice : {x : OD {suc n}} ( x ∈ z → ¬ ( x ≈ ∅ ) ) → | |
538 -- axiom-of-choice : { X : OD } → ( ¬x∅ : ¬ ( X == od∅ ) ) → { A : OD } → (A∈X : A ∈ X ) → choice ¬x∅ A∈X ∈ A | |
103 | 539 -- axiom-of-choice {X} nx {A} lt = ¬∅=→∅∈ {!!} |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
540 |