Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate src/Topology.agda @ 1203:2f09ce1dd2a1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Mar 2023 18:03:04 +0900 |
parents | 1338b6c6a9b6 |
children | 806109d79562 |
rev | line source |
---|---|
1170 | 1 {-# OPTIONS --allow-unsolved-metas #-} |
2 | |
431 | 3 open import Level |
4 open import Ordinals | |
5 module Topology {n : Level } (O : Ordinals {n}) where | |
6 | |
7 open import zf | |
8 open import logic | |
9 open _∧_ | |
10 open _∨_ | |
11 open Bool | |
12 | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
13 import OD |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
14 open import Relation.Nullary |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
15 open import Data.Empty |
431 | 16 open import Relation.Binary.Core |
1143 | 17 open import Relation.Binary.Definitions |
431 | 18 open import Relation.Binary.PropositionalEquality |
1124 | 19 import BAlgebra |
20 open BAlgebra O | |
431 | 21 open inOrdinal O |
22 open OD O | |
23 open OD.OD | |
24 open ODAxiom odAxiom | |
25 import OrdUtil | |
26 import ODUtil | |
27 open Ordinals.Ordinals O | |
28 open Ordinals.IsOrdinals isOrdinal | |
29 open Ordinals.IsNext isNext | |
30 open OrdUtil O | |
31 open ODUtil O | |
32 | |
33 import ODC | |
34 open ODC O | |
35 | |
1102 | 36 open import filter O |
1101 | 37 open import OPair O |
38 | |
482 | 39 record Topology ( L : HOD ) : Set (suc n) where |
431 | 40 field |
41 OS : HOD | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
42 OS⊆PL : OS ⊆ Power L |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
43 o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) |
1161 | 44 o∪ : { P : HOD } → P ⊆ OS → OS ∋ Union P |
1122 | 45 OS∋od∅ : OS ∋ od∅ |
1160 | 46 --- we may add |
47 -- OS∋L : OS ∋ L | |
1101 | 48 -- closed Set |
49 CS : HOD | |
1119 | 50 CS = record { od = record { def = λ x → (* x ⊆ L) ∧ odef OS (& ( L \ (* x ))) } ; odmax = osuc (& L) ; <odmax = tp02 } where |
51 tp02 : {y : Ordinal } → (* y ⊆ L) ∧ odef OS (& (L \ * y)) → y o< osuc (& L) | |
52 tp02 {y} nop = subst (λ k → k o≤ & L ) &iso ( ⊆→o≤ (λ {x} yx → proj1 nop yx )) | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
53 os⊆L : {x : HOD} → OS ∋ x → x ⊆ L |
1108 | 54 os⊆L {x} Ox {y} xy = ( OS⊆PL Ox ) _ (subst (λ k → odef k y) (sym *iso) xy ) |
1122 | 55 cs⊆L : {x : HOD} → CS ∋ x → x ⊆ L |
56 cs⊆L {x} Cx {y} xy = proj1 Cx (subst (λ k → odef k y ) (sym *iso) xy ) | |
57 CS∋L : CS ∋ L | |
1123 | 58 CS∋L = ⟪ subst (λ k → k ⊆ L) (sym *iso) (λ x → x) , subst (λ k → odef OS (& k)) (sym lem0) OS∋od∅ ⟫ where |
59 lem0 : L \ * (& L) ≡ od∅ | |
60 lem0 = subst (λ k → L \ k ≡ od∅) (sym *iso) L\L=0 | |
1154 | 61 CS⊆PL : CS ⊆ Power L |
1161 | 62 CS⊆PL {x} Cx y xy = proj1 Cx xy |
1160 | 63 P\CS=OS : {cs : HOD} → CS ∋ cs → OS ∋ ( L \ cs ) |
64 P\CS=OS {cs} ⟪ cs⊆L , olcs ⟫ = subst (λ k → odef OS k) (cong (λ k → & ( L \ k)) *iso) olcs | |
65 P\OS=CS : {cs : HOD} → OS ∋ cs → CS ∋ ( L \ cs ) | |
1161 | 66 P\OS=CS {os} oos = ⟪ subst (λ k → k ⊆ L) (sym *iso) proj1 |
1160 | 67 , subst (λ k → odef OS k) (cong (&) (trans (sym (L\Lx=x (os⊆L oos))) (cong (λ k → L \ k) (sym *iso)) )) oos ⟫ |
431 | 68 |
482 | 69 open Topology |
431 | 70 |
1163 | 71 -- Closure ( Intersection of Closed Set which include A ) |
72 | |
1162 | 73 Cl : {L : HOD} → (top : Topology L) → (A : HOD) → HOD |
74 Cl {L} top A = record { od = record { def = λ x → odef L x ∧ ( (c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x ) } | |
1150 | 75 ; odmax = & L ; <odmax = odef∧< } |
1122 | 76 |
1162 | 77 ClL : {L : HOD} → (top : Topology L) → Cl top L ≡ L |
78 ClL {L} top = ==→o≡ ( record { eq→ = λ {x} ic | |
1142 | 79 → subst (λ k → odef k x) *iso ((proj2 ic) (& L) (CS∋L top) (subst (λ k → L ⊆ k) (sym *iso) ( λ x → x))) |
80 ; eq← = λ {x} lx → ⟪ lx , ( λ c cs l⊆c → l⊆c lx) ⟫ } ) | |
1123 | 81 |
1163 | 82 -- Closure is Closed Set |
83 | |
1162 | 84 CS∋Cl : {L : HOD} → (top : Topology L) → (A : HOD) → CS top ∋ Cl top A |
85 CS∋Cl {L} top A = subst (λ k → CS top ∋ k) (==→o≡ cc00) (P\OS=CS top UOCl-is-OS) where | |
1163 | 86 OCl : HOD -- set of open set which it not contains A |
1162 | 87 OCl = record { od = record { def = λ o → odef (OS top) o ∧ ( A ⊆ (L \ * o) ) } ; odmax = & (OS top) ; <odmax = odef∧< } |
88 OCl⊆OS : OCl ⊆ OS top | |
89 OCl⊆OS ox = proj1 ox | |
90 UOCl-is-OS : OS top ∋ Union OCl | |
91 UOCl-is-OS = o∪ top OCl⊆OS | |
92 cc00 : (L \ Union OCl) =h= Cl top A | |
93 cc00 = record { eq→ = cc01 ; eq← = cc03 } where | |
94 cc01 : {x : Ordinal} → odef (L \ Union OCl) x → odef L x ∧ ((c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x) | |
95 cc01 {x} ⟪ Lx , nul ⟫ = ⟪ Lx , ( λ c cc ac → cc02 c cc ac nul ) ⟫ where | |
96 cc02 : (c : Ordinal) → odef (CS top) c → A ⊆ * c → ¬ odef (Union OCl) x → odef (* c) x | |
97 cc02 c cc ac nox with ODC.∋-p O (* c) (* x) | |
98 ... | yes y = subst (λ k → odef (* c) k) &iso y | |
99 ... | no ncx = ⊥-elim ( nox record { owner = & ( L \ * c) ; ao = ⟪ proj2 cc , cc07 ⟫ ; ox = subst (λ k → odef k x) (sym *iso) cc06 } ) where | |
100 cc06 : odef (L \ * c) x | |
101 cc06 = ⟪ Lx , subst (λ k → ¬ odef (* c) k) &iso ncx ⟫ | |
102 cc08 : * c ⊆ L | |
103 cc08 = cs⊆L top (subst (λ k → odef (CS top) k ) (sym &iso) cc ) | |
104 cc07 : A ⊆ (L \ * (& (L \ * c))) | |
105 cc07 {z} az = subst (λ k → odef k z ) ( | |
106 begin * c ≡⟨ sym ( L\Lx=x cc08 ) ⟩ | |
107 L \ (L \ * c) ≡⟨ cong (λ k → L \ k ) (sym *iso) ⟩ | |
108 L \ * (& (L \ * c)) ∎ ) ( ac az ) where open ≡-Reasoning | |
109 cc03 : {x : Ordinal} → odef L x ∧ ((c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x) → odef (L \ Union OCl) x | |
110 cc03 {x} ⟪ Lx , ccx ⟫ = ⟪ Lx , cc04 ⟫ where | |
1163 | 111 -- if x is in Cl A, it is in some c : CS, OCl says it is not , i.e. L \ o ∋ x, so it is in (L \ Union OCl) x |
1162 | 112 cc04 : ¬ odef (Union OCl) x |
113 cc04 record { owner = o ; ao = ⟪ oo , A⊆L-o ⟫ ; ox = ox } = proj2 ( subst (λ k → odef k x) *iso cc05) ox where | |
114 cc05 : odef (* (& (L \ * o))) x | |
115 cc05 = ccx (& (L \ * o)) (P\OS=CS top (subst (λ k → odef (OS top) k) (sym &iso) oo)) (subst (λ k → A ⊆ k) (sym *iso) A⊆L-o) | |
1161 | 116 |
1160 | 117 |
1119 | 118 -- Subbase P |
119 -- A set of countable intersection of P will be a base (x ix an element of the base) | |
1107 | 120 |
121 data Subbase (P : HOD) : Ordinal → Set n where | |
122 gi : {x : Ordinal } → odef P x → Subbase P x | |
123 g∩ : {x y : Ordinal } → Subbase P x → Subbase P y → Subbase P (& (* x ∩ * y)) | |
124 | |
1119 | 125 -- |
1150 | 126 -- if y is in a Subbase, some element of P contains it |
1119 | 127 |
1111 | 128 sbp : (P : HOD) {x : Ordinal } → Subbase P x → Ordinal |
129 sbp P {x} (gi {y} px) = x | |
130 sbp P {.(& (* _ ∩ * _))} (g∩ sb sb₁) = sbp P sb | |
1107 | 131 |
1111 | 132 is-sbp : (P : HOD) {x y : Ordinal } → (px : Subbase P x) → odef (* x) y → odef P (sbp P px ) ∧ odef (* (sbp P px)) y |
133 is-sbp P {x} (gi px) xy = ⟪ px , xy ⟫ | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
134 is-sbp P {.(& (* _ ∩ * _))} (g∩ {x} {y} px px₁) xy = is-sbp P px (proj1 (subst (λ k → odef k _ ) *iso xy)) |
1107 | 135 |
1155 | 136 sb⊆ : {P Q : HOD} {x : Ordinal } → P ⊆ Q → Subbase P x → Subbase Q x |
137 sb⊆ {P} {Q} P⊆Q (gi px) = gi (P⊆Q px) | |
138 sb⊆ {P} {Q} P⊆Q (g∩ px qx) = g∩ (sb⊆ P⊆Q px) (sb⊆ P⊆Q qx) | |
139 | |
1119 | 140 -- An open set generate from a base |
141 -- | |
1161 | 142 -- OS = { U ⊆ L | ∀ x ∈ U → ∃ b ∈ P → x ∈ b ⊆ U } |
1114 | 143 |
1115 | 144 record Base (L P : HOD) (u x : Ordinal) : Set n where |
1114 | 145 field |
1150 | 146 b : Ordinal |
1161 | 147 u⊆L : * u ⊆ L |
1114 | 148 sb : Subbase P b |
149 b⊆u : * b ⊆ * u | |
150 bx : odef (* b) x | |
1150 | 151 x⊆L : odef L x |
1161 | 152 x⊆L = u⊆L (b⊆u bx) |
1114 | 153 |
1115 | 154 SO : (L P : HOD) → HOD |
1119 | 155 SO L P = record { od = record { def = λ u → {x : Ordinal } → odef (* u) x → Base L P u x } ; odmax = osuc (& L) ; <odmax = tp00 } where |
156 tp00 : {y : Ordinal} → ({x : Ordinal} → odef (* y) x → Base L P y x) → y o< osuc (& L) | |
1150 | 157 tp00 {y} op = subst (λ k → k o≤ & L ) &iso ( ⊆→o≤ (λ {x} yx → Base.x⊆L (op yx) )) |
1114 | 158 |
1111 | 159 record IsSubBase (L P : HOD) : Set (suc n) where |
1110 | 160 field |
1122 | 161 P⊆PL : P ⊆ Power L |
1116 | 162 -- we may need these if OS ∋ L is necessary |
163 -- p : {x : HOD} → L ∋ x → HOD | |
1161 | 164 -- Pp : {x : HOD} → {lx : L ∋ x } → P ∋ p lx |
1116 | 165 -- px : {x : HOD} → {lx : L ∋ x } → p lx ∋ x |
1110 | 166 |
1152 | 167 InducedTopology : (L P : HOD) → IsSubBase L P → Topology L |
168 InducedTopology L P isb = record { OS = SO L P ; OS⊆PL = tp00 | |
1122 | 169 ; o∪ = tp02 ; o∩ = tp01 ; OS∋od∅ = tp03 } where |
170 tp03 : {x : Ordinal } → odef (* (& od∅)) x → Base L P (& od∅) x | |
1150 | 171 tp03 {x} 0x = ⊥-elim ( empty (* x) ( subst₂ (λ j k → odef j k ) *iso (sym &iso) 0x )) |
1115 | 172 tp00 : SO L P ⊆ Power L |
173 tp00 {u} ou x ux with ou ux | |
1161 | 174 ... | record { b = b ; u⊆L = u⊆L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = u⊆L (b⊆u bx) |
1115 | 175 tp01 : {p q : HOD} → SO L P ∋ p → SO L P ∋ q → SO L P ∋ (p ∩ q) |
1161 | 176 tp01 {p} {q} op oq {x} ux = record { b = b ; u⊆L = subst (λ k → k ⊆ L) (sym *iso) ul |
1116 | 177 ; sb = g∩ (Base.sb (op px)) (Base.sb (oq qx)) ; b⊆u = tp08 ; bx = tp14 } where |
1115 | 178 px : odef (* (& p)) x |
179 px = subst (λ k → odef k x ) (sym *iso) ( proj1 (subst (λ k → odef k _ ) *iso ux ) ) | |
180 qx : odef (* (& q)) x | |
181 qx = subst (λ k → odef k x ) (sym *iso) ( proj2 (subst (λ k → odef k _ ) *iso ux ) ) | |
182 b : Ordinal | |
183 b = & (* (Base.b (op px)) ∩ * (Base.b (oq qx))) | |
1116 | 184 tp08 : * b ⊆ * (& (p ∩ q) ) |
1150 | 185 tp08 = subst₂ (λ j k → j ⊆ k ) (sym *iso) (sym *iso) (⊆∩-dist {(* (Base.b (op px)) ∩ * (Base.b (oq qx)))} {p} {q} tp09 tp10 ) where |
1116 | 186 tp11 : * (Base.b (op px)) ⊆ * (& p ) |
187 tp11 = Base.b⊆u (op px) | |
188 tp12 : * (Base.b (oq qx)) ⊆ * (& q ) | |
189 tp12 = Base.b⊆u (oq qx) | |
1150 | 190 tp09 : (* (Base.b (op px)) ∩ * (Base.b (oq qx))) ⊆ p |
1116 | 191 tp09 = ⊆∩-incl-1 {* (Base.b (op px))} {* (Base.b (oq qx))} {p} (subst (λ k → (* (Base.b (op px))) ⊆ k ) *iso tp11) |
1150 | 192 tp10 : (* (Base.b (op px)) ∩ * (Base.b (oq qx))) ⊆ q |
1116 | 193 tp10 = ⊆∩-incl-2 {* (Base.b (oq qx))} {* (Base.b (op px))} {q} (subst (λ k → (* (Base.b (oq qx))) ⊆ k ) *iso tp12) |
194 tp14 : odef (* (& (* (Base.b (op px)) ∩ * (Base.b (oq qx))))) x | |
195 tp14 = subst (λ k → odef k x ) (sym *iso) ⟪ Base.bx (op px) , Base.bx (oq qx) ⟫ | |
1117
53ca3c609f0e
generated topology from subbase done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1116
diff
changeset
|
196 ul : (p ∩ q) ⊆ L |
1161 | 197 ul = subst (λ k → k ⊆ L ) *iso (λ {z} pq → (Base.u⊆L (op px)) (pz pq) ) where |
1116 | 198 pz : {z : Ordinal } → odef (* (& (p ∩ q))) z → odef (* (& p)) z |
199 pz {z} pq = subst (λ k → odef k z ) (sym *iso) ( proj1 (subst (λ k → odef k _ ) *iso pq ) ) | |
1161 | 200 tp02 : { q : HOD} → q ⊆ SO L P → SO L P ∋ Union q |
201 tp02 {q} q⊆O {x} ux with subst (λ k → odef k x) *iso ux | |
202 ... | record { owner = y ; ao = qy ; ox = yx } with q⊆O qy yx | |
203 ... | record { b = b ; u⊆L = u⊆L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = record { b = b ; u⊆L = subst (λ k → k ⊆ L) (sym *iso) tp04 | |
1116 | 204 ; sb = sb ; b⊆u = subst ( λ k → * b ⊆ k ) (sym *iso) tp06 ; bx = bx } where |
205 tp05 : Union q ⊆ L | |
1161 | 206 tp05 {z} record { owner = y ; ao = qy ; ox = yx } with q⊆O qy yx |
207 ... | record { b = b ; u⊆L = u⊆L ; sb = sb ; b⊆u = b⊆u ; bx = bx } | |
1116 | 208 = IsSubBase.P⊆PL isb (proj1 (is-sbp P sb bx )) _ (proj2 (is-sbp P sb bx )) |
1117
53ca3c609f0e
generated topology from subbase done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1116
diff
changeset
|
209 tp04 : Union q ⊆ L |
1150 | 210 tp04 = tp05 |
1116 | 211 tp06 : * b ⊆ Union q |
1150 | 212 tp06 {z} bz = record { owner = y ; ao = qy ; ox = b⊆u bz } |
1110 | 213 |
1142 | 214 -- Product Topology |
215 | |
216 open ZFProduct | |
217 | |
1150 | 218 -- Product Topology is not |
1142 | 219 -- ZFP (OS TP) (OS TQ) (box) |
220 | |
221 record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where | |
222 field | |
1172 | 223 p : Ordinal |
1142 | 224 op : odef (OS TP) p |
225 prod : x ≡ & (ZFP (* p) Q ) | |
226 | |
227 record BaseQ (P : HOD) {Q : HOD} (TQ : Topology Q ) (x : Ordinal) : Set n where | |
228 field | |
1172 | 229 q : Ordinal |
1142 | 230 oq : odef (OS TQ) q |
231 prod : x ≡ & (ZFP P (* q )) | |
232 | |
233 pbase⊆PL : {P Q : HOD} → (TP : Topology P) → (TQ : Topology Q) → {x : Ordinal } → BaseP TP Q x ∨ BaseQ P TQ x → odef (Power (ZFP P Q)) x | |
1172 | 234 pbase⊆PL {P} {Q} TP TQ {z} (case1 record { p = p ; op = op ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where |
1142 | 235 tp01 : odef (Power (ZFP P Q)) (& (ZFP (* p) Q)) |
236 tp01 w wz with subst (λ k → odef k w ) *iso wz | |
237 ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) tp03 ) (subst (λ k → odef Q k ) (sym &iso) qb ) where | |
238 tp03 : odef P a | |
239 tp03 = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op) pa | |
1172 | 240 pbase⊆PL {P} {Q} TP TQ {z} (case2 record { q = q ; oq = oq ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where |
1142 | 241 tp01 : odef (Power (ZFP P Q)) (& (ZFP P (* q) )) |
242 tp01 w wz with subst (λ k → odef k w ) *iso wz | |
243 ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) pa ) (subst (λ k → odef Q k ) (sym &iso) tp03 ) where | |
244 tp03 : odef Q b | |
245 tp03 = os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) oq) qb | |
246 | |
247 pbase : {P Q : HOD} → Topology P → Topology Q → HOD | |
248 pbase {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (Power (ZFP P Q)) ; <odmax = tp00 } where | |
249 tp00 : {y : Ordinal} → BaseP TP Q y ∨ BaseQ P TQ y → y o< & (Power (ZFP P Q)) | |
1150 | 250 tp00 {y} bpq = odef< ( pbase⊆PL TP TQ bpq ) |
1142 | 251 |
252 ProductTopology : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) | |
1152 | 253 ProductTopology {P} {Q} TP TQ = InducedTopology (ZFP P Q) (pbase TP TQ) record { P⊆PL = pbase⊆PL TP TQ } |
1142 | 254 |
1152 | 255 -- covers ( q ⊆ Union P ) |
1101 | 256 |
1120 | 257 record _covers_ ( P q : HOD ) : Set n where |
431 | 258 field |
1120 | 259 cover : {x : Ordinal } → odef q x → Ordinal |
1145 | 260 P∋cover : {x : Ordinal } → (lt : odef q x) → odef P (cover lt) |
261 isCover : {x : Ordinal } → (lt : odef q x) → odef (* (cover lt)) x | |
1120 | 262 |
263 open _covers_ | |
431 | 264 |
265 -- Finite Intersection Property | |
266 | |
1120 | 267 record FIP {L : HOD} (top : Topology L) : Set n where |
431 | 268 field |
1150 | 269 limit : {X : Ordinal } → * X ⊆ CS top |
1187 | 270 → ( { x : Ordinal } → Subbase (* X) x → o∅ o< x ) → Ordinal |
1150 | 271 is-limit : {X : Ordinal } → (CX : * X ⊆ CS top ) |
1187 | 272 → ( fip : { x : Ordinal } → Subbase (* X) x → o∅ o< x ) |
1143 | 273 → {x : Ordinal } → odef (* X) x → odef (* x) (limit CX fip) |
1150 | 274 L∋limit : {X : Ordinal } → (CX : * X ⊆ CS top ) |
1187 | 275 → ( fip : { x : Ordinal } → Subbase (* X) x → o∅ o< x ) |
1150 | 276 → {x : Ordinal } → odef (* X) x |
1143 | 277 → odef L (limit CX fip) |
278 L∋limit {X} CX fip {x} xx = cs⊆L top (subst (λ k → odef (CS top) k) (sym &iso) (CX xx)) (is-limit CX fip xx) | |
431 | 279 |
280 -- Compact | |
281 | |
1119 | 282 data Finite-∪ (S : HOD) : Ordinal → Set n where |
1188 | 283 fin-e : Finite-∪ S o∅ |
1190 | 284 fin-i : {x : Ordinal } → odef S x → Finite-∪ S (& ( * x , * x )) |
1188 | 285 fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y)) |
1198 | 286 -- Finite-∪ S y → Union y ⊆ S |
431 | 287 |
1120 | 288 record Compact {L : HOD} (top : Topology L) : Set n where |
431 | 289 field |
1120 | 290 finCover : {X : Ordinal } → (* X) ⊆ OS top → (* X) covers L → Ordinal |
291 isCover : {X : Ordinal } → (xo : (* X) ⊆ OS top) → (xcp : (* X) covers L ) → (* (finCover xo xcp )) covers L | |
1150 | 292 isFinite : {X : Ordinal } → (xo : (* X) ⊆ OS top) → (xcp : (* X) covers L ) → Finite-∪ (* X) (finCover xo xcp ) |
431 | 293 |
294 -- FIP is Compact | |
295 | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
296 FIP→Compact : {L : HOD} → (top : Topology L ) → FIP top → Compact top |
1150 | 297 FIP→Compact {L} top fip with trio< (& L) o∅ |
1146
1966127fc14f
wrong cover definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1145
diff
changeset
|
298 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) |
1148 | 299 ... | tri≈ ¬a b ¬c = record { finCover = λ _ _ → o∅ ; isCover = λ {X} _ xcp → fip01 xcp ; isFinite = fip00 } where |
300 -- L is empty | |
1146
1966127fc14f
wrong cover definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1145
diff
changeset
|
301 fip02 : {x : Ordinal } → ¬ odef L x |
1966127fc14f
wrong cover definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1145
diff
changeset
|
302 fip02 {x} Lx = ⊥-elim ( o<¬≡ (sym b) (∈∅< Lx) ) |
1148 | 303 fip01 : {X : Ordinal } → (xcp : * X covers L) → (* o∅) covers L |
1146
1966127fc14f
wrong cover definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1145
diff
changeset
|
304 fip01 xcp = record { cover = λ Lx → ⊥-elim (fip02 Lx) ; P∋cover = λ Lx → ⊥-elim (fip02 Lx) ; isCover = λ Lx → ⊥-elim (fip02 Lx) } |
1148 | 305 fip00 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) o∅ |
1188 | 306 fip00 {X} xo xcp = fin-e |
1146
1966127fc14f
wrong cover definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1145
diff
changeset
|
307 ... | tri> ¬a ¬b 0<L = record { finCover = finCover ; isCover = isCover1 ; isFinite = isFinite } where |
1121 | 308 -- set of coset of X |
309 CX : {X : Ordinal} → * X ⊆ OS top → Ordinal | |
1188 | 310 CX {X} ox = & ( Replace (* X) (λ z → L \ z )) |
1150 | 311 CCX : {X : Ordinal} → (os : * X ⊆ OS top) → * (CX os) ⊆ CS top |
1143 | 312 CCX {X} os {x} ox with subst (λ k → odef k x) *iso ox |
313 ... | record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ fip05 , fip06 ⟫ where -- x ≡ & (L \ * z) | |
314 fip07 : z ≡ & (L \ * x) | |
315 fip07 = subst₂ (λ j k → j ≡ k) &iso (cong (λ k → & ( L \ k )) (cong (*) (sym x=ψz))) ( cong (&) ( ==→o≡ record { eq→ = fip09 ; eq← = fip08 } )) where | |
316 fip08 : {x : Ordinal} → odef L x ∧ (¬ odef (* (& (L \ * z))) x) → odef (* z) x | |
1150 | 317 fip08 {x} ⟪ Lx , not ⟫ with subst (λ k → (¬ odef k x)) *iso not -- ( odef L x ∧ odef (* z) x → ⊥) → ⊥ |
1143 | 318 ... | Lx∧¬zx = ODC.double-neg-elim O ( λ nz → Lx∧¬zx ⟪ Lx , nz ⟫ ) |
319 fip09 : {x : Ordinal} → odef (* z) x → odef L x ∧ (¬ odef (* (& (L \ * z))) x) | |
320 fip09 {w} zw = ⟪ os⊆L top (os (subst (λ k → odef (* X) k) (sym &iso) az)) zw , subst (λ k → ¬ odef k w) (sym *iso) fip10 ⟫ where | |
321 fip10 : ¬ (odef (L \ * z) w) | |
322 fip10 ⟪ Lw , nzw ⟫ = nzw zw | |
323 fip06 : odef (OS top) (& (L \ * x)) | |
324 fip06 = os ( subst (λ k → odef (* X) k ) fip07 az ) | |
325 fip05 : * x ⊆ L | |
326 fip05 {w} xw = proj1 ( subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso ) xw ) | |
327 -- | |
328 -- X covres L means Intersection of (CX X) contains nothing | |
1152 | 329 -- then some finite Intersection of (CX X) contains nothing ( contraposition of FIP .i.e. CFIP) |
1143 | 330 -- it means there is a finite cover |
331 -- | |
1189 | 332 finCoverBase : {X : Ordinal } → * X ⊆ OS top → * X covers L → Subbase (Replace (* X) (λ z → L \ z)) o∅ |
333 finCoverBase {X} ox oc with ODC.p∨¬p O (Subbase (Replace (* X) (λ z → L \ z)) o∅) | |
334 ... | case1 sb = sb | |
1199 | 335 ... | case2 ¬sb = ⊥-elim (¬¬cover fip25 fip20) where |
336 ¬¬cover : {z : Ordinal } → odef L z → ¬ ( {y : Ordinal } → (Xy : odef (* X) y) → ¬ ( odef (* y) z )) | |
337 ¬¬cover {z} Lz nc = nc ( P∋cover oc Lz ) (isCover oc _ ) | |
338 -- ¬sb → we have finite intersection | |
1187 | 339 fip02 : {x : Ordinal} → Subbase (* (CX ox)) x → o∅ o< x |
340 fip02 {x} sc with trio< x o∅ | |
1148 | 341 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) |
342 ... | tri> ¬a ¬b c = c | |
1189 | 343 ... | tri≈ ¬a b ¬c = ⊥-elim (¬sb (subst₂ (λ j k → Subbase j k ) *iso b sc )) |
1150 | 344 -- we have some intersection because L is not empty (if we have an element of L, we don't need choice) |
1148 | 345 fip26 : odef (* (CX ox)) (& (L \ * ( cover oc ( ODC.x∋minimal O L (0<P→ne 0<L) ) ))) |
1150 | 346 fip26 = subst (λ k → odef k (& (L \ * ( cover oc ( ODC.x∋minimal O L (0<P→ne 0<L) ) )) )) (sym *iso) |
347 record { z = cover oc (x∋minimal L (0<P→ne 0<L)) ; az = P∋cover oc (x∋minimal L (0<P→ne 0<L)) ; x=ψz = refl } | |
1148 | 348 fip25 : odef L( FIP.limit fip (CCX ox) fip02 ) |
349 fip25 = FIP.L∋limit fip (CCX ox) fip02 fip26 | |
350 fip20 : {y : Ordinal } → (Xy : odef (* X) y) → ¬ ( odef (* y) ( FIP.limit fip (CCX ox) fip02 )) | |
351 fip20 {y} Xy yl = proj2 fip21 yl where | |
352 fip22 : odef (* (CX ox)) (& ( L \ * y )) | |
1150 | 353 fip22 = subst (λ k → odef k (& ( L \ * y ))) (sym *iso) record { z = y ; az = Xy ; x=ψz = refl } |
1148 | 354 fip21 : odef (L \ * y) ( FIP.limit fip (CCX ox) fip02 ) |
355 fip21 = subst (λ k → odef k ( FIP.limit fip (CCX ox) fip02 ) ) *iso ( FIP.is-limit fip (CCX ox) fip02 fip22 ) | |
1199 | 356 -- create HOD from Subbase ( finite intersection ) |
1189 | 357 finCoverSet : {X : Ordinal } → (x : Ordinal) → Subbase (Replace (* X) (λ z → L \ z)) x → HOD |
1190 | 358 finCoverSet {X} x (gi rx) = ( L \ * x ) , ( L \ * x ) |
1189 | 359 finCoverSet {X} x∩y (g∩ {x} {y} sx sy) = finCoverSet {X} x sx ∪ finCoverSet {X} y sy |
1149 | 360 -- |
1121 | 361 -- this defines finite cover |
1120 | 362 finCover : {X : Ordinal} → * X ⊆ OS top → * X covers L → Ordinal |
1189 | 363 finCover {X} ox oc = & ( finCoverSet o∅ (finCoverBase ox oc)) |
1199 | 364 -- create Finite-∪ from finCoverSet |
1120 | 365 isFinite : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (finCover xo xcp) |
1189 | 366 isFinite {X} xo xcp = fip60 o∅ (finCoverBase xo xcp) where |
367 fip60 : (x : Ordinal) → (sb : Subbase (Replace (* X) (λ z → L \ z)) x ) → Finite-∪ (* X) (& (finCoverSet {X} x sb)) | |
1190 | 368 fip60 x (gi rx) = subst (λ k → Finite-∪ (* X) k) fip62 (fin-i (fip61 rx)) where |
369 fip62 : & (* (& (L \ * x)) , * (& (L \ * x))) ≡ & ((L \ * x) , (L \ * x)) | |
370 fip62 = cong₂ (λ j k → & (j , k )) *iso *iso | |
1189 | 371 fip61 : odef (Replace (* X) (_\_ L)) x → odef (* X) ( & ((L \ * x ) )) |
372 fip61 record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef (* X) k) fip33 az1 where | |
1151
8a071bf52407
Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1150
diff
changeset
|
373 fip34 : * z1 ⊆ L |
8a071bf52407
Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1150
diff
changeset
|
374 fip34 {w} wz1 = os⊆L top (subst (λ k → odef (OS top) k) (sym &iso) (xo az1)) wz1 |
1189 | 375 fip33 : z1 ≡ & (L \ * x) |
1151
8a071bf52407
Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1150
diff
changeset
|
376 fip33 = begin |
1152 | 377 z1 ≡⟨ sym &iso ⟩ |
378 & (* z1) ≡⟨ cong (&) (sym (L\Lx=x fip34 )) ⟩ | |
379 & (L \ ( L \ * z1)) ≡⟨ cong (λ k → & ( L \ k )) (sym *iso) ⟩ | |
380 & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩ | |
1189 | 381 & (L \ * x ) ∎ where open ≡-Reasoning |
382 fip60 x∩y (g∩ {x} {y} sx sy) = subst (λ k → Finite-∪ (* X) k) fip62 ( fin-∪ (fip60 x sx) (fip60 y sy) ) where | |
383 fip62 : & (* (& (finCoverSet x sx)) ∪ * (& (finCoverSet y sy))) ≡ & (finCoverSet x sx ∪ finCoverSet y sy) | |
384 fip62 = cong (&) ( begin | |
385 (* (& (finCoverSet x sx)) ∪ * (& (finCoverSet y sy))) ≡⟨ cong₂ _∪_ *iso *iso ⟩ | |
386 finCoverSet x sx ∪ finCoverSet y sy ∎ ) where open ≡-Reasoning | |
1120 | 387 -- is also a cover |
388 isCover1 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → * (finCover xo xcp) covers L | |
1190 | 389 isCover1 {X} xo xcp = subst₂ (λ j k → j covers k ) (sym *iso) (subst (λ k → L \ k ≡ L) (sym o∅≡od∅) L\0=L) |
390 (fip70 o∅ (finCoverBase xo xcp)) where | |
391 fip70 : (x : Ordinal) → (sb : Subbase (Replace (* X) (λ z → L \ z)) x ) → (finCoverSet {X} x sb) covers (L \ * x) | |
1199 | 392 fip70 x (gi rx) = fip73 where |
393 fip73 : ((L \ * x) , (L \ * x)) covers (L \ * x) -- obvious | |
394 fip73 = record { cover = λ _ → & (L \ * x) ; P∋cover = λ _ → case1 refl | |
395 ; isCover = λ {x} lt → subst (λ k → odef k x) (sym *iso) lt } | |
1190 | 396 fip70 x∩y (g∩ {x} {y} sx sy) = subst (λ k → finCoverSet (& (* x ∩ * y)) (g∩ sx sy) covers |
1194 | 397 (L \ k)) (sym *iso) ( fip43 {_} {L} {* x} {* y} (fip71 (fip70 x sx)) (fip72 (fip70 y sy)) ) where |
398 fip71 : {a b c : HOD} → a covers c → (a ∪ b) covers c | |
399 fip71 {a} {b} {c} cov = record { cover = cover cov ; P∋cover = λ lt → case1 (P∋cover cov lt) | |
400 ; isCover = isCover cov } | |
401 fip72 : {a b c : HOD} → a covers c → (b ∪ a) covers c | |
402 fip72 {a} {b} {c} cov = record { cover = cover cov ; P∋cover = λ lt → case2 (P∋cover cov lt) | |
403 ; isCover = isCover cov } | |
1190 | 404 fip45 : {L a b : HOD} → (L \ (a ∩ b)) ⊆ ( (L \ a) ∪ (L \ b)) |
405 fip45 {L} {a} {b} {x} Lab with ODC.∋-p O b (* x) | |
406 ... | yes bx = case1 ⟪ proj1 Lab , (λ ax → proj2 Lab ⟪ ax , subst (λ k → odef b k) &iso bx ⟫ ) ⟫ | |
407 ... | no ¬bx = case2 ⟪ proj1 Lab , subst (λ k → ¬ ( odef b k)) &iso ¬bx ⟫ | |
408 fip43 : {A L a b : HOD } → A covers (L \ a) → A covers (L \ b ) → A covers ( L \ ( a ∩ b ) ) | |
409 fip43 {A} {L} {a} {b} ca cb = record { cover = fip44 ; P∋cover = fip46 ; isCover = fip47 } where | |
410 fip44 : {x : Ordinal} → odef (L \ (a ∩ b)) x → Ordinal | |
411 fip44 {x} Lab with fip45 {L} {a} {b} Lab | |
412 ... | case1 La = cover ca La | |
413 ... | case2 Lb = cover cb Lb | |
414 fip46 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef A (fip44 lt) | |
415 fip46 {x} Lab with fip45 {L} {a} {b} Lab | |
416 ... | case1 La = P∋cover ca La | |
417 ... | case2 Lb = P∋cover cb Lb | |
418 fip47 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef (* (fip44 lt)) x | |
419 fip47 {x} Lab with fip45 {L} {a} {b} Lab | |
420 ... | case1 La = isCover ca La | |
421 ... | case2 Lb = isCover cb Lb | |
1151
8a071bf52407
Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1150
diff
changeset
|
422 |
1180 | 423 open _==_ |
424 | |
1158 | 425 Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top → FIP top |
1180 | 426 Compact→FIP {L} top compact with trio< (& L) o∅ |
1175 | 427 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) |
1198 | 428 ... | tri≈ ¬a L=0 ¬c = record { limit = λ {X} CX fip → o∅ ; is-limit = λ {X} CX fip xx → ⊥-elim (fip000 CX fip xx) } where |
429 -- empty L case | |
430 -- if 0 < X then 0 < x ∧ L ∋ xfrom fip | |
431 -- if 0 ≡ X then ¬ odef X x | |
432 fip000 : {X x : Ordinal} (CX : * X ⊆ CS top) → ({y : Ordinal} → Subbase (* X) y → o∅ o< y) → ¬ odef (* X) x | |
433 fip000 {X} {x} CX fip xx with trio< o∅ X | |
434 ... | tri< 0<X ¬b ¬c = ¬∅∋ (subst₂ (λ j k → odef j k ) (trans (trans (sym *iso) (cong (*) L=0)) o∅≡od∅ ) (sym &iso) | |
435 ( cs⊆L top (subst (λ k → odef (CS top) k ) (sym &iso) (CX xx)) Xe )) where | |
436 0<x : o∅ o< x | |
437 0<x = fip (gi xx ) | |
438 e : HOD -- we have an element of x | |
439 e = ODC.minimal O (* x) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<x) ) | |
440 Xe : odef (* x) (& e) | |
441 Xe = ODC.x∋minimal O (* x) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<x) ) | |
442 ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) ( begin | |
443 * X ≡⟨ cong (*) (sym 0=X) ⟩ | |
444 * o∅ ≡⟨ o∅≡od∅ ⟩ | |
445 od∅ ∎ ) (sym &iso) xx ) ) where open ≡-Reasoning | |
446 ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) | |
1175 | 447 ... | tri> ¬a ¬b 0<L = record { limit = limit ; is-limit = fip00 } where |
448 -- set of coset of X | |
449 OX : {X : Ordinal} → * X ⊆ CS top → Ordinal | |
1188 | 450 OX {X} ox = & ( Replace (* X) (λ z → L \ z )) |
1175 | 451 OOX : {X : Ordinal} → (cs : * X ⊆ CS top) → * (OX cs) ⊆ OS top |
452 OOX {X} cs {x} ox with subst (λ k → odef k x) *iso ox | |
453 ... | record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (OS top) k) (sym x=ψz) ( P\CS=OS top (cs comp01)) where | |
454 comp01 : odef (* X) (& (* z)) | |
455 comp01 = subst (λ k → odef (* X) k) (sym &iso) az | |
1183 | 456 -- if all finite intersection of X contains something, |
1175 | 457 -- there is no finite cover. From Compactness, (OX X) is not a cover of L ( contraposition of Compact) |
458 -- it means there is a limit | |
1199 | 459 record NC {X : Ordinal} (CX : * X ⊆ CS top) (fip : {x : Ordinal} → Subbase (* X) x → o∅ o< x) (0<X : o∅ o< X) : Set n where |
460 field -- find an element x, which is not covered (which is a limit point) | |
461 x : Ordinal | |
462 yx : {y : Ordinal} (Xy : odef (* X) y) → odef (* y) x | |
1187 | 463 has-intersection : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {x : Ordinal} → Subbase (* X) x → o∅ o< x) |
1199 | 464 → (0<X : o∅ o< X ) → NC CX fip 0<X |
465 has-intersection {X} CX fip 0<X = intersection where | |
1198 | 466 e : HOD -- we have an element of X |
467 e = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) | |
468 Xe : odef (* X) (& e) | |
469 Xe = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) | |
1183 | 470 no-cover : ¬ ( (* (OX CX)) covers L ) |
1198 | 471 no-cover cov = ⊥-elim (no-finite-cover (Compact.isCover compact (OOX CX) cov)) where |
472 -- construct Subase from Finite-∪ | |
1180 | 473 fp01 : Ordinal |
474 fp01 = Compact.finCover compact (OOX CX) cov | |
1194 | 475 record SB (t : Ordinal) : Set n where |
476 field | |
477 i : Ordinal | |
478 sb : Subbase (* X) (& (L \ * i)) | |
1198 | 479 t⊆i : (L \ * i) ⊆ (L \ Union ( * t ) ) |
1194 | 480 fp02 : (t : Ordinal) → Finite-∪ (* (OX CX)) t → SB t |
1198 | 481 fp02 t fin-e = record { i = & ( L \ e) ; sb = gi (subst (λ k → odef (* X) k) fp21 Xe) ; t⊆i = fp23 } where |
482 -- t ≡ o∅, no cover. Any subst of L is ok and we have e ⊆ L | |
483 fp22 : e ⊆ L | |
484 fp22 {x} lt = cs⊆L top (CX Xe) lt | |
485 fp21 : & e ≡ & (L \ * (& (L \ e))) | |
1194 | 486 fp21 = cong (&) (trans (sym (L\Lx=x fp22)) (cong (λ k → L \ k) (sym *iso))) |
1198 | 487 fp23 : (L \ * (& (L \ e))) ⊆ (L \ Union (* o∅)) |
1197 | 488 fp23 {x} ⟪ Lx , _ ⟫ = ⟪ Lx , ( λ lt → ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) o∅≡od∅ (sym &iso) (Own.ao lt )))) ⟫ |
1198 | 489 fp02 t (fin-i {x} tx ) = record { i = x ; sb = gi fp03 ; t⊆i = fp24 } where |
490 -- we have a single cover x, L \ * x is single finite intersection | |
1197 | 491 fp24 : (L \ * x) ⊆ (L \ Union (* (& (* x , * x)))) |
492 fp24 {y} ⟪ Lx , not ⟫ = ⟪ Lx , subst (λ k → ¬ odef (Union k) y) (sym *iso) fp25 ⟫ where | |
493 fp25 : ¬ odef (Union (* x , * x)) y | |
494 fp25 record { owner = .(& (* x)) ; ao = (case1 refl) ; ox = ox } = not (subst (λ k → odef k y) *iso ox ) | |
495 fp25 record { owner = .(& (* x)) ; ao = (case2 refl) ; ox = ox } = not (subst (λ k → odef k y) *iso ox ) | |
1198 | 496 fp03 : odef (* X) (& (L \ * x)) -- becase x is an element of Replace (* X) (λ z → L \ z ) |
1194 | 497 fp03 with subst (λ k → odef k x ) *iso tx |
498 ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef (* X) k) fip33 az1 where | |
499 fip34 : * z1 ⊆ L | |
500 fip34 {w} wz1 = cs⊆L top (subst (λ k → odef (CS top) k) (sym &iso) (CX az1) ) wz1 | |
501 fip33 : z1 ≡ & (L \ * x) | |
502 fip33 = begin | |
503 z1 ≡⟨ sym &iso ⟩ | |
504 & (* z1) ≡⟨ cong (&) (sym (L\Lx=x fip34 )) ⟩ | |
505 & (L \ ( L \ * z1)) ≡⟨ cong (λ k → & ( L \ k )) (sym *iso) ⟩ | |
506 & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩ | |
507 & (L \ * x ) ∎ where open ≡-Reasoning | |
1198 | 508 fp02 t (fin-∪ {tx} {ty} ux uy ) = record { i = & (* (SB.i (fp02 tx ux)) ∪ * (SB.i (fp02 ty uy))) ; sb = fp11 ; t⊆i = fp35 } where |
509 fp35 : (L \ * (& (* (SB.i (fp02 tx ux)) ∪ * (SB.i (fp02 ty uy))))) ⊆ (L \ Union (* (& (* tx ∪ * ty)))) | |
1197 | 510 fp35 = subst₂ (λ j k → (L \ j ) ⊆ (L \ Union k)) (sym *iso) (sym *iso) fp36 where |
511 fp40 : {z tz : Ordinal } → Finite-∪ (* (OX CX)) tz → odef (Union (* tz )) z → odef L z | |
1199 | 512 fp40 {z} {.(Ordinals.o∅ O)} fin-e record { owner = owner ; ao = ao ; ox = ox } |
513 = ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) o∅≡od∅ (sym &iso) ao )) | |
1197 | 514 fp40 {z} {.(& (* _ , * _))} (fin-i {w} x) uz = fp41 x (subst (λ k → odef (Union k) z) *iso uz) where |
515 fp41 : (x : odef (* (OX CX)) w) → (uz : odef (Union (* w , * w)) z ) → odef L z | |
516 fp41 x record { owner = .(& (* w)) ; ao = (case1 refl) ; ox = ox } = | |
517 os⊆L top (OOX CX (subst (λ k → odef (* (OX CX)) k) (sym &iso) x )) (subst (λ k → odef k z) *iso ox ) | |
518 fp41 x record { owner = .(& (* w)) ; ao = (case2 refl) ; ox = ox } = | |
519 os⊆L top (OOX CX (subst (λ k → odef (* (OX CX)) k) (sym &iso) x )) (subst (λ k → odef k z) *iso ox ) | |
520 fp40 {z} {.(& (* _ ∪ * _))} (fin-∪ {x1} {y1} ftx fty) uz with subst (λ k → odef (Union k) z ) *iso uz | |
521 ... | record { owner = o ; ao = case1 x1o ; ox = oz } = fp40 ftx record { owner = o ; ao = x1o ; ox = oz } | |
522 ... | record { owner = o ; ao = case2 y1o ; ox = oz } = fp40 fty record { owner = o ; ao = y1o ; ox = oz } | |
1198 | 523 fp36 : (L \ (* (SB.i (fp02 tx ux)) ∪ * (SB.i (fp02 ty uy)))) ⊆ (L \ Union (* tx ∪ * ty)) |
1197 | 524 fp36 {z} ⟪ Lz , not ⟫ = ⟪ Lz , fp37 ⟫ where |
525 fp37 : ¬ odef (Union (* tx ∪ * ty)) z | |
526 fp37 record { owner = owner ; ao = (case1 ax) ; ox = ox } = not (case1 (fp39 record { owner = _ ; ao = ax ; ox = ox }) ) where | |
1198 | 527 fp38 : (L \ (* (SB.i (fp02 tx ux)))) ⊆ (L \ Union (* tx)) |
528 fp38 = SB.t⊆i (fp02 tx ux) | |
529 fp39 : Union (* tx) ⊆ (* (SB.i (fp02 tx ux))) | |
530 fp39 {w} txw with ∨L\X {L} {* (SB.i (fp02 tx ux))} (fp40 ux txw) | |
1197 | 531 ... | case1 sb = sb |
532 ... | case2 lsb = ⊥-elim ( proj2 (fp38 lsb) txw ) | |
533 fp37 record { owner = owner ; ao = (case2 ax) ; ox = ox } = not (case2 (fp39 record { owner = _ ; ao = ax ; ox = ox }) ) where | |
1198 | 534 fp38 : (L \ (* (SB.i (fp02 ty uy)))) ⊆ (L \ Union (* ty)) |
535 fp38 = SB.t⊆i (fp02 ty uy) | |
536 fp39 : Union (* ty) ⊆ (* (SB.i (fp02 ty uy))) | |
537 fp39 {w} tyw with ∨L\X {L} {* (SB.i (fp02 ty uy))} (fp40 uy tyw) | |
1197 | 538 ... | case1 sb = sb |
539 ... | case2 lsb = ⊥-elim ( proj2 (fp38 lsb) tyw ) | |
1194 | 540 fp04 : {tx ty : Ordinal} → & (* (& (L \ * tx)) ∩ * (& (L \ * ty))) ≡ & (L \ * (& (* tx ∪ * ty))) |
541 fp04 {tx} {ty} = cong (&) ( ==→o≡ record { eq→ = fp05 ; eq← = fp09 } ) where | |
1187 | 542 fp05 : {x : Ordinal} → odef (* (& (L \ * tx)) ∩ * (& (L \ * ty))) x → odef (L \ * (& (* tx ∪ * ty))) x |
543 fp05 {x} lt with subst₂ (λ j k → odef (j ∩ k) x ) *iso *iso lt | |
544 ... | ⟪ ⟪ Lx , ¬tx ⟫ , ⟪ Ly , ¬ty ⟫ ⟫ = subst (λ k → odef (L \ k) x) (sym *iso) ⟪ Lx , fp06 ⟫ where | |
545 fp06 : ¬ odef (* tx ∪ * ty) x | |
546 fp06 (case1 tx) = ¬tx tx | |
547 fp06 (case2 ty) = ¬ty ty | |
548 fp09 : {x : Ordinal} → odef (L \ * (& (* tx ∪ * ty))) x → odef (* (& (L \ * tx)) ∩ * (& (L \ * ty))) x | |
549 fp09 {x} lt with subst (λ k → odef (L \ k) x) (*iso) lt | |
550 ... | ⟪ Lx , ¬tx∨ty ⟫ = subst₂ (λ j k → odef (j ∩ k) x ) (sym *iso) (sym *iso) | |
551 ⟪ ⟪ Lx , ( λ tx → ¬tx∨ty (case1 tx)) ⟫ , ⟪ Lx , ( λ ty → ¬tx∨ty (case2 ty)) ⟫ ⟫ | |
1198 | 552 fp11 : Subbase (* X) (& (L \ * (& ((* (SB.i (fp02 tx ux)) ∪ * (SB.i (fp02 ty uy))))))) |
553 fp11 = subst (λ k → Subbase (* X) k ) fp04 ( g∩ (SB.sb (fp02 tx ux)) (SB.sb (fp02 ty uy )) ) | |
554 -- | |
555 -- becase of fip, finite cover cannot be a cover | |
556 -- | |
1195 | 557 fcov : Finite-∪ (* (OX CX)) (Compact.finCover compact (OOX CX) cov) |
558 fcov = Compact.isFinite compact (OOX CX) cov | |
1196 | 559 0<sb : {i : Ordinal } → (sb : Subbase (* X) (& (L \ * i))) → o∅ o< & (L \ * i) |
560 0<sb {i} sb = fip sb | |
561 sb : SB (Compact.finCover compact (OOX CX) cov) | |
562 sb = fp02 fp01 (Compact.isFinite compact (OOX CX) cov) | |
1198 | 563 no-finite-cover : ¬ ( (* (Compact.finCover compact (OOX CX) cov)) covers L ) |
564 no-finite-cover fcovers = ⊥-elim ( o<¬≡ (cong (&) (sym (==→o≡ f22))) f25 ) where | |
1196 | 565 f23 : (L \ * (SB.i sb)) ⊆ ( L \ Union (* (Compact.finCover compact (OOX CX) cov))) |
1198 | 566 f23 = SB.t⊆i sb |
1196 | 567 f22 : (L \ Union (* (Compact.finCover compact (OOX CX) cov))) =h= od∅ |
568 f22 = record { eq→ = λ lt → ⊥-elim ( f24 lt) ; eq← = λ lt → ⊥-elim (¬x<0 lt) } where | |
569 f24 : {x : Ordinal } → ¬ ( odef (L \ Union (* (Compact.finCover compact (OOX CX) cov))) x ) | |
570 f24 {x} ⟪ Lx , not ⟫ = not record { owner = cover fcovers Lx ; ao = P∋cover fcovers Lx ; ox = isCover fcovers Lx } | |
571 f25 : & od∅ o< (& (L \ Union (* (Compact.finCover compact (OOX CX) cov))) ) | |
572 f25 = ordtrans<-≤ (subst (λ k → k o< & (L \ * (SB.i sb))) (sym ord-od∅) (0<sb (SB.sb sb) ) ) ( begin | |
573 & (L \ * (SB.i sb)) ≤⟨ ⊆→o≤ f23 ⟩ | |
574 & (L \ Union (* (Compact.finCover compact (OOX CX) cov))) ∎ ) where open o≤-Reasoning O | |
1199 | 575 -- if we have no cover, we can consruct NC |
576 intersection : NC CX fip 0<X | |
577 intersection with ODC.p∨¬p O (NC CX fip 0<X) | |
1184 | 578 ... | case1 nc = nc |
1185 | 579 ... | case2 ¬nc = ⊥-elim ( no-cover record { cover = λ Lx → & (L \ coverf Lx) ; P∋cover = fp22 ; isCover = fp23 } ) where |
580 coverSet : {x : Ordinal} → odef L x → HOD | |
1186 | 581 coverSet {x} Lx = record { od = record { def = λ y → odef (* X) y ∧ odef (L \ * y) x } ; odmax = X |
582 ; <odmax = λ {x} lt → subst (λ k → x o< k) &iso ( odef< (proj1 lt)) } | |
1185 | 583 fp17 : {x : Ordinal} → (Lx : odef L x ) → ¬ ( coverSet Lx =h= od∅ ) |
1187 | 584 fp17 {x} Lx eq = ⊥-elim (¬nc record { x = x ; yx = fp19 } ) where |
1185 | 585 fp19 : {y : Ordinal} → odef (* X) y → odef (* y) x |
586 fp19 {y} Xy with ∨L\X {L} {* y} {x} Lx | |
587 ... | case1 yx = yx | |
588 ... | case2 lyx = ⊥-elim ( ¬x<0 {y} ( eq→ eq fp20 )) where | |
589 fp20 : odef (* X) y ∧ odef (L \ * y) x | |
590 fp20 = ⟪ Xy , lyx ⟫ | |
591 coverf : {x : Ordinal} → (Lx : odef L x ) → HOD | |
592 coverf Lx = ODC.minimal O (coverSet Lx) (fp17 Lx) | |
1186 | 593 fp22 : {x : Ordinal} (lt : odef L x) → odef (* (OX CX)) (& (L \ coverf lt)) |
594 fp22 {x} Lx = subst (λ k → odef k (& (L \ coverf Lx ))) (sym *iso) record { z = _ ; az = fp25 ; x=ψz = fp24 } where | |
595 fp24 : & (L \ coverf Lx) ≡ & (L \ * (& (coverf Lx))) | |
596 fp24 = cong (λ k → & ( L \ k )) (sym *iso) | |
1185 | 597 fp25 : odef (* X) (& (coverf Lx)) |
598 fp25 = proj1 ( ODC.x∋minimal O (coverSet Lx) (fp17 Lx) ) | |
1186 | 599 fp23 : {x : Ordinal} (lt : odef L x) → odef (* (& (L \ coverf lt))) x |
600 fp23 {x} Lx = subst (λ k → odef k x) (sym *iso) ⟪ Lx , fp26 ⟫ where | |
601 fp26 : ¬ odef (coverf Lx) x | |
602 fp26 = subst (λ k → ¬ odef k x ) *iso (proj2 (proj2 ( ODC.x∋minimal O (coverSet Lx) (fp17 Lx) )) ) | |
1199 | 603 limit : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {x : Ordinal} → Subbase (* X) x → o∅ o< x) → Ordinal |
1180 | 604 limit {X} CX fip with trio< X o∅ |
605 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) | |
606 ... | tri≈ ¬a b ¬c = o∅ | |
1199 | 607 ... | tri> ¬a ¬b c = NC.x ( has-intersection CX fip c) |
1175 | 608 fip00 : {X : Ordinal} (CX : * X ⊆ CS top) |
1187 | 609 (fip : {x : Ordinal} → Subbase (* X) x → o∅ o< x) |
1175 | 610 {x : Ordinal} → odef (* X) x → odef (* x) (limit CX fip ) |
1180 | 611 fip00 {X} CX fip {x} Xx with trio< X o∅ |
612 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) | |
613 ... | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (sym b) (subst (λ k → o∅ o< k) &iso (∈∅< Xx) ) ) | |
1199 | 614 ... | tri> ¬a ¬b c = NC.yx ( has-intersection CX fip c ) Xx |
431 | 615 |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1112
diff
changeset
|
616 open Filter |
1102 | 617 |
431 | 618 -- Ultra Filter has limit point |
619 | |
1159 | 620 record Neighbor {P : HOD} (TP : Topology P) (x v : Ordinal) : Set n where |
621 field | |
622 u : Ordinal | |
623 ou : odef (OS TP) u | |
624 ux : odef (* u) x | |
625 v⊆P : * v ⊆ P | |
1170 | 626 u⊆v : * u ⊆ * v |
1102 | 627 |
1169 | 628 -- |
629 -- Neighbor on x is a Filter (on Power P) | |
630 -- | |
1170 | 631 NeighborF : {P : HOD} (TP : Topology P) (x : Ordinal ) → Filter {Power P} {P} (λ x → x) |
1169 | 632 NeighborF {P} TP x = record { filter = NF ; f⊆L = NF⊆PP ; filter1 = f1 ; filter2 = f2 } where |
1168 | 633 nf00 : {v : Ordinal } → Neighbor TP x v → odef (Power P) v |
634 nf00 {v} nei y vy = Neighbor.v⊆P nei vy | |
1167 | 635 NF : HOD |
1168 | 636 NF = record { od = record { def = λ v → Neighbor TP x v } ; odmax = & (Power P) ; <odmax = λ lt → odef< (nf00 lt) } |
1167 | 637 NF⊆PP : NF ⊆ Power P |
1168 | 638 NF⊆PP = nf00 |
639 f1 : {p q : HOD} → Power P ∋ q → NF ∋ p → p ⊆ q → NF ∋ q | |
1170 | 640 f1 {p} {q} Pq Np p⊆q = record { u = Neighbor.u Np ; ou = Neighbor.ou Np ; ux = Neighbor.ux Np ; v⊆P = Pq _ ; u⊆v = f11 } where |
1168 | 641 f11 : * (Neighbor.u Np) ⊆ * (& q) |
1170 | 642 f11 {x} ux = subst (λ k → odef k x ) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso (Neighbor.u⊆v Np ux)) ) |
1168 | 643 f2 : {p q : HOD} → NF ∋ p → NF ∋ q → Power P ∋ (p ∩ q) → NF ∋ (p ∩ q) |
1170 | 644 f2 {p} {q} Np Nq Ppq = record { u = upq ; ou = ou ; ux = ux ; v⊆P = Ppq _ ; u⊆v = f20 } where |
1168 | 645 upq : Ordinal |
646 upq = & ( * (Neighbor.u Np) ∩ * (Neighbor.u Nq) ) | |
647 ou : odef (OS TP) upq | |
648 ou = o∩ TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou Np)) (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou Nq)) | |
649 ux : odef (* upq) x | |
1170 | 650 ux = subst ( λ k → odef k x ) (sym *iso) ⟪ Neighbor.ux Np , Neighbor.ux Nq ⟫ |
1168 | 651 f20 : * upq ⊆ * (& (p ∩ q)) |
652 f20 = subst₂ (λ j k → j ⊆ k ) (sym *iso) (sym *iso) ( λ {x} pq | |
1170 | 653 → ⟪ subst (λ k → odef k x) *iso (Neighbor.u⊆v Np (proj1 pq)) , subst (λ k → odef k x) *iso (Neighbor.u⊆v Nq (proj2 pq)) ⟫ ) |
1153 | 654 |
1165 | 655 CAP : (P : HOD) {p q : HOD } → Power P ∋ p → Power P ∋ q → Power P ∋ (p ∩ q) |
656 CAP P {p} {q} Pp Pq x pqx with subst (λ k → odef k x ) *iso pqx | |
657 ... | ⟪ px , qx ⟫ = Pp _ (subst (λ k → odef k x) (sym *iso) px ) | |
658 | |
1170 | 659 NEG : (P : HOD) {p : HOD } → Power P ∋ p → Power P ∋ (P \ p ) |
660 NEG P {p} Pp x vx with subst (λ k → odef k x) *iso vx | |
661 ... | ⟪ Px , npx ⟫ = Px | |
1142 | 662 |