annotate HOD.agda @ 148:6e767ad3edc2

give up
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 08 Jul 2019 19:45:59 +0900
parents c848550c8b39
children ebcbfd9d9c8e
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 15
diff changeset
1 open import Level
112
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 111
diff changeset
2 module HOD where
3
e7990ff544bf reocrd ZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
14
e11e95d5ddee separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 11
diff changeset
4 open import zf
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
5 open import ordinal
23
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 22
diff changeset
6 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
14
e11e95d5ddee separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 11
diff changeset
7 open import Relation.Binary.PropositionalEquality
e11e95d5ddee separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 11
diff changeset
8 open import Data.Nat.Properties
6
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
9 open import Data.Empty
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
10 open import Relation.Nullary
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
11 open import Relation.Binary
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
12 open import Relation.Binary.Core
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
13
27
bade0a35fdd9 OD, HOD, TC
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 26
diff changeset
14 -- Ordinal Definable Set
11
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 10
diff changeset
15
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
16 record OD {n : Level} : Set (suc n) where
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
17 field
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
18 def : (x : Ordinal {n} ) → Set n
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
19
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
20 open OD
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
21 open import Data.Unit
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
22
44
fcac01485f32 od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 43
diff changeset
23 open Ordinal
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
24 open _∧_
44
fcac01485f32 od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 43
diff changeset
25
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
26 record _==_ {n : Level} ( a b : OD {n} ) : Set n where
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
27 field
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
28 eq→ : ∀ { x : Ordinal {n} } → def a x → def b x
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
29 eq← : ∀ { x : Ordinal {n} } → def b x → def a x
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
30
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
31 id : {n : Level} {A : Set n} → A → A
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
32 id x = x
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
33
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
34 eq-refl : {n : Level} { x : OD {n} } → x == x
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
35 eq-refl {n} {x} = record { eq→ = id ; eq← = id }
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
36
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
37 open _==_
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
38
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
39 eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
40 eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq }
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
41
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
42 eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
43 eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) }
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
44
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
45 ⇔→== : {n : Level} { x y : OD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
46 eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
47 eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
48
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
49 -- Ordinal in OD ( and ZFSet )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
50 Ord : { n : Level } → ( a : Ordinal {n} ) → OD {n}
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
51 Ord {n} a = record { def = λ y → y o< a }
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
52
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
53 od∅ : {n : Level} → OD {n}
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
54 od∅ {n} = Ord o∅
40
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 39
diff changeset
55
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
56 postulate
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
57 -- OD can be iso to a subset of Ordinal ( by means of Godel Set )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
58 od→ord : {n : Level} → OD {n} → Ordinal {n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
59 ord→od : {n : Level} → Ordinal {n} → OD {n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
60 c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
61 oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x
113
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 112
diff changeset
62 diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
63 ==→o≡ : {n : Level} → { x y : OD {suc n} } → (x == y) → x ≡ y
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
64 -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
65 -- o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x
100
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
66 -- supermum as Replacement Axiom
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
67 sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n}
98
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 97
diff changeset
68 sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ
111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
69 -- contra-position of mimimulity of supermum required in Power Set Axiom
98
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 97
diff changeset
70 sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 97
diff changeset
71 sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ))
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
72 -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ )
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
73 minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n}
117
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
74 -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x )
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
75 x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
76 minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) )
123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 122
diff changeset
77 -- we should prove this in agda, but simply put here
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
78 ===-≡ : {n : Level} { x y : OD {suc n}} → x == y → x ≡ y
123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 122
diff changeset
79
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
80 _∋_ : { n : Level } → ( a x : OD {n} ) → Set n
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
81 _∋_ {n} a x = def a ( od→ord x )
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
82
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
83 _c<_ : { n : Level } → ( x a : OD {n} ) → Set n
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
84 x c< a = a ∋ x
103
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
85
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
86 _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n)
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
87 a c≤ b = (a ≡ b) ∨ ( b ∋ a )
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
88
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
89 cseq : {n : Level} → OD {n} → OD {n}
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
90 cseq x = record { def = λ y → def x (osuc y) } where
113
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 112
diff changeset
91
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
92 def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
93 def-subst df refl refl = df
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
94
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
95 sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n}
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
96 sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
97
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
98 sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → def ( sup-od ψ ) (od→ord ( ψ x ))
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
99 sup-c< {n} ψ {x} = def-subst {n} {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )}
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
100 lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
101 lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x)))
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
102 lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) )
28
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
103
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
104 otrans : {n : Level} {a x : Ordinal {n} } → def (Ord a) x → { y : Ordinal {n} } → y o< x → def (Ord a) y
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
105 otrans {n} {a} {x} x<a {y} y<x = ordtrans y<x x<a
123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 122
diff changeset
106
37
f10ceee99d00 ¬ ( y c< x ) → x ≡ od∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
107 ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n}
81
96c932d0145d simpler ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
108 ∅3 {n} {x} = TransFinite {n} c2 c3 x where
30
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
109 c0 : Nat → Ordinal {n} → Set n
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
110 c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n}
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
111 c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
112 c2 Zero not = refl
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
113 c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
114 ... | t with t (case1 ≤-refl )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
115 c2 (Suc lx) not | t | ()
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
116 c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ })
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
117 c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
118 ... | t with t (case2 Φ< )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
119 c3 lx (Φ .lx) d not | t | ()
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
120 c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } )
34
c9ad0d97ce41 fix oridinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
121 ... | t with t (case2 (s< s<refl ) )
30
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
122 c3 lx (OSuc .lx x₁) d not | t | ()
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
123
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
124 ∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
125 ∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
126 ∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ<
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
127 ∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n)
37
f10ceee99d00 ¬ ( y c< x ) → x ≡ od∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
128
46
e584686a1307 == and ∅7
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 45
diff changeset
129 ord-iso : {n : Level} {y : Ordinal {n} } → record { lv = lv (od→ord (ord→od y)) ; ord = ord (od→ord (ord→od y)) } ≡ record { lv = lv y ; ord = ord y }
e584686a1307 == and ∅7
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 45
diff changeset
130 ord-iso = cong ( λ k → record { lv = lv k ; ord = ord k } ) diso
44
fcac01485f32 od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 43
diff changeset
131
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
132 -- avoiding lv != Zero error
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
133 orefl : {n : Level} → { x : OD {n} } → { y : Ordinal {n} } → od→ord x ≡ y → od→ord x ≡ y
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
134 orefl refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
135
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
136 ==-iso : {n : Level} → { x y : OD {n} } → ord→od (od→ord x) == ord→od (od→ord y) → x == y
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
137 ==-iso {n} {x} {y} eq = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
138 eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ;
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
139 eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
140 where
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
141 lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
142 lemma {x} {z} d = def-subst d oiso refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
143
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
144 =-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y)
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
145 =-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
146
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
147 ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
148 ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
149 lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
150 lemma ox ox refl = eq-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
152 o≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ord→od x == ord→od y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
153 o≡→== {n} {x} {.x} refl = eq-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
154
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
155 >→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
156 >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
157
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
158 c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
159 c≤-refl x = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
160
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
161 ∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a
91
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
162 ∋→o< {n} {a} {x} lt = t where
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
163 t : (od→ord x) o< (od→ord a)
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
164 t = c<→o< {suc n} {x} {a} lt
91
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
165
148
6e767ad3edc2 give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
166 -- o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n}
80
461690d60d07 remove ∅-base-def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 79
diff changeset
167
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
168 o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x )
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
169 o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
170
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
171 o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y
111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
172 o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt)
54
33fb8228ace9 fix selection axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 53
diff changeset
173
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
174 ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ } == od∅ {n}
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
175 eq→ ∅0 {w} (lift ())
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
176 eq← ∅0 {w} (case1 ())
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
177 eq← ∅0 {w} (case2 ())
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
178
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
179 ∅< : {n : Level} → { x y : OD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} )
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
180 ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d
60
6a1f67a4cc6e dead end
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
181 ∅< {n} {x} {y} d eq | lift ()
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
182
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
183 ∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
184 ∅6 {n} {x} x∋x = o<¬≡ refl ( c<→o< {suc n} {x} {x} x∋x )
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
185
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
186 def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x
76
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
187 def-iso refl t = t
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
188
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
189 is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
190 is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
191 is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
192 is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ())
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
193
119
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
194
79
c07c548b2ac1 add some lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 78
diff changeset
195 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
94
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 93
diff changeset
196 -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n))
59
d13d1351a1fa lemma = cong₂ (λ x not → minimul x not ) oiso { }6
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
197
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
198 in-codomain : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n}
148
6e767ad3edc2 give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
199 in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) }
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
200
96
f239ffc27fd0 Power Set and L
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
201 -- Power Set of X ( or constructible by λ y → def X (od→ord y )
97
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
202
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
203 ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n}
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
204 ZFSubset A x = record { def = λ y → def A y ∧ def x y } where
97
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
205
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
206 Def : {n : Level} → (A : OD {suc n}) → OD {suc n}
121
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 120
diff changeset
207 Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) )
96
f239ffc27fd0 Power Set and L
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
208
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
209 OrdSubset : {n : Level} → (A x : Ordinal {suc n} ) → ZFSubset (Ord A) (Ord x) ≡ Ord ( minα A x )
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
210 OrdSubset {n} A x = ===-≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
211 lemma1 : {y : Ordinal} → def (ZFSubset (Ord A) (Ord x)) y → def (Ord (minα A x)) y
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
212 lemma1 {y} s with trio< A x
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
213 lemma1 {y} s | tri< a ¬b ¬c = proj1 s
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
214 lemma1 {y} s | tri≈ ¬a refl ¬c = proj1 s
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
215 lemma1 {y} s | tri> ¬a ¬b c = proj2 s
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
216 lemma2 : {y : Ordinal} → def (Ord (minα A x)) y → def (ZFSubset (Ord A) (Ord x)) y
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
217 lemma2 {y} lt with trio< A x
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
218 lemma2 {y} lt | tri< a ¬b ¬c = record { proj1 = lt ; proj2 = ordtrans lt a }
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
219 lemma2 {y} lt | tri≈ ¬a refl ¬c = record { proj1 = lt ; proj2 = lt }
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
220 lemma2 {y} lt | tri> ¬a ¬b c = record { proj1 = ordtrans lt c ; proj2 = lt }
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
221
96
f239ffc27fd0 Power Set and L
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
222 -- Constructible Set on α
122
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
223 -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
224 -- L (Φ 0) = Φ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
225 -- L (OSuc lv n) = { Def ( L n ) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
226 -- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) )
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
227 L : {n : Level} → (α : Ordinal {suc n}) → OD {suc n}
97
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
228 L {n} record { lv = Zero ; ord = (Φ .0) } = od∅
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
229 L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) )
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
230 L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α )
121
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 120
diff changeset
231 cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx }))))
89
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 87
diff changeset
232
123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 122
diff changeset
233 -- L0 : {n : Level} → (α : Ordinal {suc n}) → α o< β → L (osuc α) ∋ L α
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
234 -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x
122
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
235
111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
236 omega : { n : Level } → Ordinal {n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
237 omega = record { lv = Suc Zero ; ord = Φ 1 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
238
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
239 OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
240 OD→ZF {n} = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
241 ZFSet = OD {suc n}
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
242 ; _∋_ = _∋_
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
243 ; _≈_ = _==_
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
244 ; ∅ = od∅
28
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
245 ; _,_ = _,_
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
246 ; Union = Union
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
247 ; Power = Power
28
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
248 ; Select = Select
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
249 ; Replace = Replace
111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
250 ; infinite = Ord omega
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
251 ; isZF = isZF
28
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
252 } where
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
253 ZFSet = OD {suc n}
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
254 Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → Set (suc n) ) → OD {suc n}
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
255 Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) }
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
256 Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
257 Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
258 _,_ : OD {suc n} → OD {suc n} → OD {suc n}
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
259 x , y = Ord (omax (od→ord x) (od→ord y))
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
260 _∩_ : ( A B : ZFSet ) → ZFSet
145
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
261 A ∩ B = record { def = λ x → def A x ∧ def B x }
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
262 Union : OD {suc n} → OD {suc n}
145
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
263 Union U = record { def = λ y → def U (osuc y) }
54
33fb8228ace9 fix selection axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 53
diff changeset
264 _∈_ : ( A B : ZFSet ) → Set (suc n)
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
265 A ∈ B = B ∋ A
54
33fb8228ace9 fix selection axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 53
diff changeset
266 _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n)
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
267 _⊆_ A B {x} = A ∋ x → B ∋ x
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
268 Power : OD {suc n} → OD {suc n}
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
269 Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x )
103
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
270 {_} : ZFSet → ZFSet
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
271 { x } = ( x , x )
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
272
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
273 infixr 200 _∈_
96
f239ffc27fd0 Power Set and L
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
274 -- infixr 230 _∩_ _∪_
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
275 infixr 220 _⊆_
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
276 isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (Ord omega)
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
277 isZF = record {
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
278 isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans }
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
279 ; pair = pair
118
78fe704c3543 Union done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 117
diff changeset
280 ; union-u = λ X z UX∋z → union-u {X} {z} UX∋z
72
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 71
diff changeset
281 ; union→ = union→
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 71
diff changeset
282 ; union← = union←
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
283 ; empty = empty
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
284 ; power→ = power→
76
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
285 ; power← = power←
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
286 ; extensionality = extensionality
30
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
287 ; minimul = minimul
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
288 ; regularity = regularity
78
9a7a64b2388c infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 77
diff changeset
289 ; infinity∅ = infinity∅
93
d382a7902f5e replacement
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 91
diff changeset
290 ; infinity = λ _ → infinity
116
47541e86c6ac axiom of selection
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 115
diff changeset
291 ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y}
135
b60b6e8a57b0 otrans in repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 134
diff changeset
292 ; replacement← = replacement←
b60b6e8a57b0 otrans in repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 134
diff changeset
293 ; replacement→ = replacement→
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
294 } where
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
295
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
296 pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B)
87
296388c03358 split omax?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 84
diff changeset
297 proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B)
296388c03358 split omax?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 84
diff changeset
298 proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B)
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
299
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
300 empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x)
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
301 empty x (case1 ())
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
302 empty x (case2 ())
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
303
145
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
304 union-d : (X : OD {suc n}) → OD {suc n}
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
305 union-d X = record { def = λ y → def X (osuc y) }
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
306 union-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n}
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
307 union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) )
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
308 union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
309 union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z ))
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
310 union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx))
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
311 union→ X z u xx | tri< a ¬b ¬c | ()
145
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
312 union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
313 union→ X z u xx | tri> ¬a ¬b c = def-subst lemma1 (sym lemma0) diso where
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
314 lemma0 : X ≡ Ord (od→ord X)
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
315 lemma0 = sym {!!}
145
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
316 lemma : osuc (od→ord z) o< od→ord X
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
317 lemma = ordtrans c ( c<→o< ( proj1 xx ) )
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
318 lemma1 : Ord ( od→ord X) ∋ ord→od (osuc (od→ord z) )
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
319 lemma1 = o<-subst lemma (sym diso) refl
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
320 union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z )
145
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
321 union← X z UX∋z = record { proj1 = lemma ; proj2 = <-osuc } where
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
322 lemma : X ∋ union-u {X} {z} UX∋z
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
323 lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} UX∋z refl {!!}
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
324
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
325 ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
326 ψiso {ψ} t refl = t
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
327 selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y)
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
328 selection {ψ} {X} {y} = record {
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
329 proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) }
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
330 ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso }
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
331 }
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
332 replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
333 replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
334 lemma : def (in-codomain X ψ) (od→ord (ψ x))
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
335 lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k))
148
6e767ad3edc2 give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
336 {!!} } ))
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
337 replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y))
148
6e767ad3edc2 give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
338 replacement→ {ψ} X x lt = contra-position lemma (lemma2 {!!}) where
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
339 lemma2 : ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (Ord y))))
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
340 → ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y)))
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
341 lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
342 lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (Ord y))) → (ord→od (od→ord x) == ψ (Ord y))
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
343 lemma3 {y} eq = subst (λ k → ord→od (od→ord x) == k ) oiso (o≡→== eq )
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
344 lemma : ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y)) )
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
345 lemma not y not2 = not (Ord y) (subst (λ k → k == ψ (Ord y)) oiso ( proj2 not2 ))
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
346
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
347 ---
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
348 --- Power Set
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
349 ---
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
350 --- First consider ordinals in OD
100
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
351 ---
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
352 --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
353 --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
354 --
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
355 -- if Power A ∋ t, from a propertiy of minimum sup there is osuc ZFSubset A ∋ t
100
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
356 -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x
128
69a845b82854 ... dead end?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 127
diff changeset
357 -- In case of later, ZFSubset A ∋ t and t ∋ x implies A ∋ x by transitivity
100
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
358 --
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
359 POrd : {a : Ordinal } {t : OD} → Def (Ord a) ∋ t → Def (Ord a) ∋ Ord (od→ord t)
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
360 POrd {a} {t} P∋t = {!!}
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
361 ∩-≡ : { a b : OD {suc n} } → ({x : OD {suc n} } → (a ∋ x → b ∋ x)) → a == ( b ∩ a )
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
362 ∩-≡ {a} {b} inc = record {
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
363 eq→ = λ {x} x<a → record { proj2 = x<a ;
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
364 proj1 = def-subst {suc n} {_} {_} {b} {x} (inc (def-subst {suc n} {_} {_} {a} {_} x<a refl (sym diso) )) refl diso } ;
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
365 eq← = λ {x} x<a∩b → proj2 x<a∩b }
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
366 ord-power→ : (a : Ordinal ) ( t : OD) → Def (Ord a) ∋ t → {x : OD} → t ∋ x → Ord a ∋ x
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
367 ord-power→ a t P∋t {x} t∋x with osuc-≡< (sup-lb (POrd P∋t))
127
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 126
diff changeset
368 ... | case1 eq = proj1 (def-subst (Ltx t∋x) (sym (subst₂ (λ j k → j ≡ k ) oiso oiso ( cong (λ k → ord→od k) (sym eq) ))) refl ) where
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
369 Ltx : {n : Level} → {x t : OD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x
127
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 126
diff changeset
370 Ltx {n} {x} {t} lt = c<→o< lt
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
371 ... | case2 lt = lemma3 where
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
372 sp = sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x)))
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
373 minsup : OD
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
374 minsup = ZFSubset (Ord a) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x)))))
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
375 Ltx : {n : Level} → {x t : OD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x
127
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 126
diff changeset
376 Ltx {n} {x} {t} lt = c<→o< lt
130
3849614bef18 new replacement axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 129
diff changeset
377 -- lemma1 hold because minsup is Ord (minα a sp)
127
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 126
diff changeset
378 lemma1 : od→ord (Ord (od→ord t)) o< od→ord minsup → minsup ∋ Ord (od→ord t)
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
379 lemma1 lt with OrdSubset a ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x))))
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
380 ... | eq with subst ( λ k → ZFSubset (Ord a) k ≡ Ord (minα a sp)) {!!} eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
381 ... | eq1 = def-subst {suc n} {_} {_} {minsup} {od→ord (Ord (od→ord t))} {!!} lemma2 {!!} where
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
382 lemma2 : Ord (od→ord (ZFSubset (Ord a) (ord→od sp))) ≡ minsup
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
383 lemma2 = let open ≡-Reasoning in begin
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
384 Ord (od→ord (ZFSubset (Ord a) (ord→od sp)))
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
385 ≡⟨ cong (λ k → Ord (od→ord k)) eq1 ⟩
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
386 Ord (od→ord (Ord (minα a sp)))
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
387 ≡⟨ cong (λ k → Ord (od→ord k)) {!!} ⟩
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
388 Ord (od→ord (ord→od (minα a sp)))
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
389 ≡⟨ cong (λ k → Ord k) diso ⟩
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
390 Ord (minα a sp)
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
391 ≡⟨ sym eq1 ⟩
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
392 minsup
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
393
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
394 lemma3 : od→ord x o< a
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
395 lemma3 = otrans (proj1 (lemma1 lt) ) (c<→o< {suc n} {x} {Ord (od→ord t)} (Ltx t∋x) )
100
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
396 --
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
397 -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
398 -- Power A is a sup of ZFSubset A t, so Power A ∋ t
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
399 --
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
400 ord-power← : (a : Ordinal ) (t : OD) → ({x : OD} → (t ∋ x → (Ord a) ∋ x)) → Def (Ord a) ∋ t
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
401 ord-power← a t t→A = def-subst {suc n} {_} {_} {Def (Ord a)} {od→ord t}
127
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 126
diff changeset
402 lemma refl (lemma1 lemma-eq )where
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
403 lemma-eq : ZFSubset (Ord a) t == t
97
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
404 eq→ lemma-eq {z} w = proj2 w
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
405 eq← lemma-eq {z} w = record { proj2 = w ;
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
406 proj1 = def-subst {suc n} {_} {_} {(Ord a)} {z}
126
1114081eb51f power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 125
diff changeset
407 ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso }
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
408 lemma1 : {n : Level } {a : Ordinal {suc n}} { t : OD {suc n}}
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
409 → (eq : ZFSubset (Ord a) t == t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
410 lemma1 {n} {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (===-≡ eq ))
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
411 lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x)))
98
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 97
diff changeset
412 lemma = sup-o<
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
413
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
414 --
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
415 -- Every set in OD is a subset of Ordinals
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
416 --
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
417 -- Power A = Replace (Def (Ord (od→ord A))) ( λ y → A ∩ y )
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
418 power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
419 power→ A t P∋t {x} t∋x = TransFiniteExists {suc n} {λ y → (t == (A ∩ ord→od y))}
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
420 lemma4 lemma5 where
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
421 a = od→ord A
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
422 lemma2 : ¬ ( (y : OD) → ¬ (t == (A ∩ y)))
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
423 lemma2 = replacement→ (Def (Ord (od→ord A))) t P∋t
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
424 lemma3 : (y : OD) → t == ( A ∩ y ) → A ∋ x
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
425 lemma3 y eq = proj1 (eq→ eq t∋x)
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
426 lemma4 : ¬ ((y : Ordinal) → ¬ (t == (A ∩ ord→od y)))
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
427 lemma4 not = lemma2 ( λ y not1 → not (od→ord y) (subst (λ k → t == ( A ∩ k )) (sym oiso) not1 ))
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
428 lemma5 : {y : Ordinal} → t == (A ∩ ord→od y) → def A (od→ord x)
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
429 lemma5 {y} eq = lemma3 (ord→od y) eq
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
430 power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
431 power← A t t→A = record { proj1 = lemma1 ; proj2 = lemma2 } where
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
432 a = od→ord A
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
433 lemma0 : {x : OD} → t ∋ x → Ord a ∋ x
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
434 lemma0 {x} t∋x = c<→o< (t→A t∋x)
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
435 lemma3 : Def (Ord a) ∋ t
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
436 lemma3 = ord-power← a t lemma0
143
21b9e78e9359 union remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
437 lemma4 : od→ord t ≡ od→ord (A ∩ Ord (od→ord t))
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
438 lemma4 = cong ( λ k → od→ord k ) ( ===-≡ (subst (λ k → t == (A ∩ k)) {!!} {!!} ))
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
439 lemma1 : od→ord t o< sup-o (λ x → od→ord (A ∩ ord→od x))
143
21b9e78e9359 union remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
440 lemma1 with sup-o< {suc n} {λ x → od→ord (A ∩ ord→od x)} {od→ord t}
21b9e78e9359 union remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
441 ... | lt = o<-subst {suc n} {_} {_} {_} {_} lt (sym (subst (λ k → od→ord t ≡ k) lemma5 lemma4 )) refl where
21b9e78e9359 union remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
442 lemma5 : od→ord (A ∩ Ord (od→ord t)) ≡ od→ord (A ∩ ord→od (od→ord t))
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
443 lemma5 = cong (λ k → od→ord (A ∩ k )) {!!}
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
444 lemma2 : def (in-codomain (Def (Ord (od→ord A))) (_∩_ A)) (od→ord t)
148
6e767ad3edc2 give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
445 lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = {!!} }) ) where
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
446
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
447 ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅)
60
6a1f67a4cc6e dead end
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
448 ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
449 regularity : (x : OD) (not : ¬ (x == od∅)) →
115
277c2f3b8acb Select declaration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 114
diff changeset
450 (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅)
117
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
451 proj1 (regularity x not ) = x∋minimul x not
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
452 proj2 (regularity x not ) = record { eq→ = lemma1 ; eq← = λ {y} d → lemma2 {y} d } where
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
453 lemma1 : {x₁ : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ → def od∅ x₁
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
454 lemma1 {x₁} s = ⊥-elim ( minimul-1 x not (ord→od x₁) lemma3 ) where
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
455 lemma3 : def (minimul x not) (od→ord (ord→od x₁)) ∧ def x (od→ord (ord→od x₁))
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
456 lemma3 = record { proj1 = def-subst {suc n} {_} {_} {minimul x not} {_} (proj1 s) refl (sym diso)
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
457 ; proj2 = proj2 (proj2 s) }
117
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
458 lemma2 : {x₁ : Ordinal} → def od∅ x₁ → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
459 lemma2 {y} d = ⊥-elim (empty (ord→od y) (def-subst {suc n} {_} {_} {od∅} {od→ord (ord→od y)} d refl (sym diso) ))
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
460
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
461 extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B
76
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
462 eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
463 eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
464
119
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
465 open import Relation.Binary.PropositionalEquality
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
466 uxxx-ord : {x : OD {suc n}} → {y : Ordinal {suc n}} → def (Union (x , (x , x))) y ⇔ ( y o< osuc (od→ord x) )
119
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
467 uxxx-ord {x} {y} = subst (λ k → k ⇔ ( y o< osuc (od→ord x) )) (sym lemma) ( osuc2 y (od→ord x)) where
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
468 lemma : {y : Ordinal {suc n}} → def (Union (x , (x , x))) y ≡ osuc y o< osuc (osuc (od→ord x))
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
469 lemma {y} = let open ≡-Reasoning in begin
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
470 def (Union (x , (x , x))) y
145
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
471 ≡⟨⟩
119
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
472 def ( Ord ( omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) ))) ( osuc y )
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
473 ≡⟨⟩
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
474 osuc y o< omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) )
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
475 ≡⟨ cong (λ k → osuc y o< omax (od→ord x) k ) {!!} ⟩
119
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
476 osuc y o< omax (od→ord x) (omax (od→ord x) (od→ord x) )
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
477 ≡⟨ cong (λ k → osuc y o< k ) (omxxx (od→ord x) ) ⟩
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
478 osuc y o< osuc (osuc (od→ord x))
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
479
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
480 infinite : OD {suc n}
111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
481 infinite = Ord omega
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
482 infinity∅ : Ord omega ∋ od∅ {suc n}
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
483 infinity∅ = o<-subst (case1 (s≤s z≤n) ) {!!} refl
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
484 infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x ))
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
485 infinity x lt = o<-subst ( lemma (od→ord x) lt ) eq refl where
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
486 eq : osuc (od→ord x) ≡ od→ord (Union (x , (x , x)))
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
487 eq = let open ≡-Reasoning in begin
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
488 osuc (od→ord x)
147
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
489 ≡⟨ {!!} ⟩
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
490 od→ord (Ord (osuc (od→ord x)))
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
491 ≡⟨ cong ( λ k → od→ord k ) ( sym (==→o≡ ( ⇔→== uxxx-ord ))) ⟩
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
492 od→ord (Union (x , (x , x)))
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
493
91
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
494 lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
495 lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n)
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
496 lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n)
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
497 lemma record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } (case1 (s≤s ()))
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
498 lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ()))
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
499 lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
500 lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl
103
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
501 -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] -- this form is no good since X is a transitive set
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
502 -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ]
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
503 record Choice (z : OD {suc n}) : Set (suc (suc n)) where
103
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
504 field
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
505 u : {x : OD {suc n}} ( x∈z : x ∈ z ) → OD {suc n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
506 t : {x : OD {suc n}} ( x∈z : x ∈ z ) → (x : OD {suc n} ) → OD {suc n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
507 choice : { x : OD {suc n} } → ( x∈z : x ∈ z ) → ( u x∈z ∩ x) == { t x∈z x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
508 -- choice : {x : OD {suc n}} ( x ∈ z → ¬ ( x ≈ ∅ ) ) →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
509 -- axiom-of-choice : { X : OD } → ( ¬x∅ : ¬ ( X == od∅ ) ) → { A : OD } → (A∈X : A ∈ X ) → choice ¬x∅ A∈X ∈ A
103
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
510 -- axiom-of-choice {X} nx {A} lt = ¬∅=→∅∈ {!!}
78
9a7a64b2388c infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 77
diff changeset
511