Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate filter.agda @ 270:fc3d4bc1dc5e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 07 Oct 2019 01:28:11 +0900 |
parents | 30e419a2be24 |
children | 2169d948159b |
rev | line source |
---|---|
190 | 1 open import Level |
236 | 2 open import Ordinals |
3 module filter {n : Level } (O : Ordinals {n}) where | |
4 | |
190 | 5 open import zf |
236 | 6 open import logic |
7 import OD | |
193 | 8 |
190 | 9 open import Relation.Nullary |
10 open import Relation.Binary | |
11 open import Data.Empty | |
12 open import Relation.Binary | |
13 open import Relation.Binary.Core | |
14 open import Relation.Binary.PropositionalEquality | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
15 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
16 |
236 | 17 open inOrdinal O |
18 open OD O | |
19 open OD.OD | |
190 | 20 |
236 | 21 open _∧_ |
22 open _∨_ | |
23 open Bool | |
24 | |
267 | 25 _∩_ : ( A B : OD ) → OD |
26 A ∩ B = record { def = λ x → def A x ∧ def B x } | |
27 | |
28 _∪_ : ( A B : OD ) → OD | |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
29 A ∪ B = record { def = λ x → def A x ∨ def B x } |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
30 |
270 | 31 _\_ : ( A B : OD ) → OD |
32 A \ B = record { def = λ x → def A x ∧ ( ¬ ( def B x ) ) } | |
33 | |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
34 ∪-Union : { A B : OD } → Union (A , B) ≡ ( A ∪ B ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
35 ∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
36 lemma1 : {x : Ordinal} → def (Union (A , B)) x → def (A ∪ B) x |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
37 lemma1 {x} lt = lemma3 lt where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
38 lemma4 : {y : Ordinal} → def (A , B) y ∧ def (ord→od y) x → ¬ (¬ ( def A x ∨ def B x) ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
39 lemma4 {y} z with proj1 z |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
40 lemma4 {y} z | case1 refl = double-neg (case1 ( subst (λ k → def k x ) oiso (proj2 z)) ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
41 lemma4 {y} z | case2 refl = double-neg (case2 ( subst (λ k → def k x ) oiso (proj2 z)) ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
42 lemma3 : (((u : Ordinals.ord O) → ¬ def (A , B) u ∧ def (ord→od u) x) → ⊥) → def (A ∪ B) x |
270 | 43 lemma3 not = double-neg-eilm (FExists _ lemma4 not) -- choice |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
44 lemma2 : {x : Ordinal} → def (A ∪ B) x → def (Union (A , B)) x |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
45 lemma2 {x} (case1 A∋x) = subst (λ k → def (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) A |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
46 (record { proj1 = case1 refl ; proj2 = subst (λ k → def A k) (sym diso) A∋x})) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
47 lemma2 {x} (case2 B∋x) = subst (λ k → def (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) B |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
48 (record { proj1 = case2 refl ; proj2 = subst (λ k → def B k) (sym diso) B∋x})) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
49 |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
50 ∩-Select : { A B : OD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ≡ ( A ∩ B ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
51 ∩-Select {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
52 lemma1 : {x : Ordinal} → def (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → def (A ∩ B) x |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
53 lemma1 {x} lt = record { proj1 = proj1 lt ; proj2 = subst (λ k → def B k ) diso (proj2 (proj2 lt)) } |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
54 lemma2 : {x : Ordinal} → def (A ∩ B) x → def (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
55 lemma2 {x} lt = record { proj1 = proj1 lt ; proj2 = |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
56 record { proj1 = subst (λ k → def A k) (sym diso) (proj1 lt) ; proj2 = subst (λ k → def B k ) (sym diso) (proj2 lt) } } |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
57 |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
58 dist-ord : {p q r : OD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
59 dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
60 lemma1 : {x : Ordinal} → def (p ∩ (q ∪ r)) x → def ((p ∩ q) ∪ (p ∩ r)) x |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
61 lemma1 {x} lt with proj2 lt |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
62 lemma1 {x} lt | case1 q∋x = case1 ( record { proj1 = proj1 lt ; proj2 = q∋x } ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
63 lemma1 {x} lt | case2 r∋x = case2 ( record { proj1 = proj1 lt ; proj2 = r∋x } ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
64 lemma2 : {x : Ordinal} → def ((p ∩ q) ∪ (p ∩ r)) x → def (p ∩ (q ∪ r)) x |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
65 lemma2 {x} (case1 p∩q) = record { proj1 = proj1 p∩q ; proj2 = case1 (proj2 p∩q ) } |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
66 lemma2 {x} (case2 p∩r) = record { proj1 = proj1 p∩r ; proj2 = case2 (proj2 p∩r ) } |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
67 |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
68 dist-ord2 : {p q r : OD } → p ∪ ( q ∩ r ) ≡ ( p ∪ q ) ∩ ( p ∪ r ) |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
69 dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
70 lemma1 : {x : Ordinal} → def (p ∪ (q ∩ r)) x → def ((p ∪ q) ∩ (p ∪ r)) x |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
71 lemma1 {x} (case1 cp) = record { proj1 = case1 cp ; proj2 = case1 cp } |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
72 lemma1 {x} (case2 cqr) = record { proj1 = case2 (proj1 cqr) ; proj2 = case2 (proj2 cqr) } |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
73 lemma2 : {x : Ordinal} → def ((p ∪ q) ∩ (p ∪ r)) x → def (p ∪ (q ∩ r)) x |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
74 lemma2 {x} lt with proj1 lt | proj2 lt |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
75 lemma2 {x} lt | case1 cp | _ = case1 cp |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
76 lemma2 {x} lt | _ | case1 cp = case1 cp |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
77 lemma2 {x} lt | case2 cq | case2 cr = case2 ( record { proj1 = cq ; proj2 = cr } ) |
267 | 78 |
270 | 79 record IsBooleanAlgebra ( L : Set n) |
80 ( b1 : L ) | |
81 ( b0 : L ) | |
82 ( -_ : L → L ) | |
83 ( _+_ : L → L → L ) | |
84 ( _*_ : L → L → L ) : Set (suc n) where | |
85 field | |
86 +-assoc : {a b c : L } → a + ( b + c ) ≡ (a + b) + c | |
87 *-assoc : {a b c : L } → a * ( b * c ) ≡ (a * b) * c | |
88 +-sym : {a b : L } → a + b ≡ b + a | |
89 -sym : {a b : L } → a * b ≡ b * a | |
90 -aab : {a b : L } → a + ( a * b ) ≡ a | |
91 *-aab : {a b : L } → a * ( a + b ) ≡ a | |
92 -dist : {a b c : L } → a + ( b * c ) ≡ ( a * b ) + ( a * c ) | |
93 *-dist : {a b c : L } → a * ( b + c ) ≡ ( a + b ) * ( a + c ) | |
94 a+0 : {a : L } → a + b0 ≡ a | |
95 a*1 : {a : L } → a * b1 ≡ a | |
96 a+-a1 : {a : L } → a + ( - a ) ≡ b1 | |
97 a*-a0 : {a : L } → a * ( - a ) ≡ b0 | |
98 | |
99 record BooleanAlgebra ( L : Set n) : Set (suc n) where | |
100 field | |
101 b1 : L | |
102 b0 : L | |
103 -_ : L → L | |
104 _++_ : L → L → L | |
105 _**_ : L → L → L | |
106 isBooleanAlgebra : IsBooleanAlgebra L b1 b0 -_ _++_ _**_ | |
107 | |
108 | |
265 | 109 record Filter ( L : OD ) : Set (suc n) where |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
110 field |
270 | 111 filter : OD |
112 proper : ¬ ( filter ∋ od∅ ) | |
113 inL : { x : OD} → _⊆_ filter L {x} | |
114 filter1 : { p q : OD } → ( {x : OD} → _⊆_ q L {x} ) → filter ∋ p → ({ x : OD} → _⊆_ p q {x} ) → filter ∋ q | |
115 filter2 : { p q : OD } → filter ∋ p → filter ∋ q → filter ∋ (p ∩ q) | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
116 |
265 | 117 open Filter |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
118 |
270 | 119 L-filter : {L : OD} → (P : Filter L ) → {p : OD} → filter P ∋ p → filter P ∋ L |
120 L-filter {L} P {p} lt = filter1 P {p} {L} {!!} lt {!!} | |
190 | 121 |
270 | 122 prime-filter : {L : OD} → Filter L → ∀ {p q : OD } → Set n |
123 prime-filter {L} P {p} {q} = filter P ∋ ( p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q ) | |
190 | 124 |
270 | 125 ultra-filter : {L : OD} → Filter L → ∀ {p : OD } → Set n |
126 ultra-filter {L} P {p} = L ∋ p → ( filter P ∋ p ) ∨ ( filter P ∋ ( L \ p) ) | |
190 | 127 |
265 | 128 |
270 | 129 filter-lemma1 : {L : OD} → (P : Filter L) → ∀ {p q : OD } → ( ∀ (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} |
130 filter-lemma1 {L} P {p} {q} u lt = {!!} | |
131 | |
132 filter-lemma2 : {L : OD} → (P : Filter L) → ( ∀ {p q : OD } → prime-filter {L} P {p} {q}) → ∀ (p : OD ) → ultra-filter {L} P {p} | |
133 filter-lemma2 {L} P prime p with prime {!!} | |
134 ... | t = {!!} | |
266 | 135 |
267 | 136 generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) |
266 | 137 generated-filter {L} P p = record { |
270 | 138 filter = {!!} ; inL = {!!} ; |
139 filter1 = {!!} ; filter2 = {!!} | |
266 | 140 } |
141 | |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
142 record Dense (P : OD ) : Set (suc n) where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
143 field |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
144 dense : OD |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
145 incl : { x : OD} → _⊆_ dense P {x} |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
146 dense-f : OD → OD |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
147 dense-p : { p x : OD} → P ∋ p → _⊆_ p (dense-f p) {x} |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
148 |
266 | 149 -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) |
150 | |
151 infinite = ZF.infinite OD→ZF | |
152 | |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
153 module in-countable-ordinal {n : Level} where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
154 |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
155 import ordinal |
266 | 156 |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
157 open ordinal.C-Ordinal-with-choice |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
158 |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
159 Hω2 : Filter (Power (Power infinite)) |
270 | 160 Hω2 = {!!} |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
161 |