Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate filter.agda @ 292:773e03dfd6ed
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 13 Jun 2020 15:59:10 +0900 |
parents | ef93c56ad311 |
children | 9972bd4a0d6f |
rev | line source |
---|---|
190 | 1 open import Level |
236 | 2 open import Ordinals |
3 module filter {n : Level } (O : Ordinals {n}) where | |
4 | |
190 | 5 open import zf |
236 | 6 open import logic |
7 import OD | |
193 | 8 |
190 | 9 open import Relation.Nullary |
10 open import Relation.Binary | |
11 open import Data.Empty | |
12 open import Relation.Binary | |
13 open import Relation.Binary.Core | |
14 open import Relation.Binary.PropositionalEquality | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
15 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
16 |
236 | 17 open inOrdinal O |
18 open OD O | |
19 open OD.OD | |
277
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
20 open ODAxiom odAxiom |
190 | 21 |
236 | 22 open _∧_ |
23 open _∨_ | |
24 open Bool | |
25 | |
267 | 26 _∩_ : ( A B : OD ) → OD |
27 A ∩ B = record { def = λ x → def A x ∧ def B x } | |
28 | |
29 _∪_ : ( A B : OD ) → OD | |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
30 A ∪ B = record { def = λ x → def A x ∨ def B x } |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
31 |
270 | 32 _\_ : ( A B : OD ) → OD |
33 A \ B = record { def = λ x → def A x ∧ ( ¬ ( def B x ) ) } | |
34 | |
35 | |
292 | 36 -- Kunen p.76 and p.53 |
265 | 37 record Filter ( L : OD ) : Set (suc n) where |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
38 field |
290 | 39 filter : OD |
40 f⊆PL : filter ⊆ Power L | |
271 | 41 filter1 : { p q : OD } → q ⊆ L → filter ∋ p → p ⊆ q → filter ∋ q |
270 | 42 filter2 : { p q : OD } → filter ∋ p → filter ∋ q → filter ∋ (p ∩ q) |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
43 |
292 | 44 open Filter |
45 | |
46 proper-filter : {L : OD} → (P : Filter L ) → {p : OD} → Set n | |
47 proper-filter {L} P {p} = filter P ∋ L | |
48 | |
49 prime-filter : {L : OD} → Filter L → ∀ {p q : OD } → Set n | |
50 prime-filter {L} P {p} {q} = filter P ∋ ( p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q ) | |
51 | |
290 | 52 record Ideal ( L : OD ) : Set (suc n) where |
53 field | |
54 ideal : OD | |
55 i⊆PL : ideal ⊆ Power L | |
56 ideal1 : { p q : OD } → q ⊆ L → ideal ∋ p → q ⊆ p → ideal ∋ q | |
57 ideal2 : { p q : OD } → ideal ∋ p → ideal ∋ q → ideal ∋ (p ∪ q) | |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
58 |
290 | 59 open Ideal |
287 | 60 |
292 | 61 proper-ideal : {L : OD} → (P : Ideal L ) → {p : OD} → Set n |
62 proper-ideal {L} P {p} = ideal P ∋ od∅ | |
190 | 63 |
292 | 64 prime-ideal : {L : OD} → Ideal L → ∀ {p q : OD } → Set n |
65 prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q ) | |
66 | |
190 | 67 |
270 | 68 ultra-filter : {L : OD} → Filter L → ∀ {p : OD } → Set n |
69 ultra-filter {L} P {p} = L ∋ p → ( filter P ∋ p ) ∨ ( filter P ∋ ( L \ p) ) | |
190 | 70 |
265 | 71 |
270 | 72 filter-lemma1 : {L : OD} → (P : Filter L) → ∀ {p q : OD } → ( ∀ (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} |
73 filter-lemma1 {L} P {p} {q} u lt = {!!} | |
74 | |
75 filter-lemma2 : {L : OD} → (P : Filter L) → ( ∀ {p q : OD } → prime-filter {L} P {p} {q}) → ∀ (p : OD ) → ultra-filter {L} P {p} | |
76 filter-lemma2 {L} P prime p with prime {!!} | |
77 ... | t = {!!} | |
266 | 78 |
267 | 79 generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) |
266 | 80 generated-filter {L} P p = record { |
290 | 81 filter = {!!} ; |
270 | 82 filter1 = {!!} ; filter2 = {!!} |
266 | 83 } |
84 | |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
85 record Dense (P : OD ) : Set (suc n) where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
86 field |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
87 dense : OD |
271 | 88 incl : dense ⊆ P |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
89 dense-f : OD → OD |
271 | 90 dense-p : { p : OD} → P ∋ p → p ⊆ (dense-f p) |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
91 |
266 | 92 -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) |
93 | |
94 infinite = ZF.infinite OD→ZF | |
95 | |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
96 module in-countable-ordinal {n : Level} where |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
97 |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
98 import ordinal |
266 | 99 |
276 | 100 -- open ordinal.C-Ordinal-with-choice |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
101 |
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
102 Hω2 : Filter (Power (Power infinite)) |
270 | 103 Hω2 = {!!} |
269
30e419a2be24
disjunction and conjunction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
104 |