annotate OD.agda @ 185:a002ce0346dd

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 22 Jul 2019 18:36:45 +0900
parents 65e1b2e415bb
children 914cc522c53a
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
16
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 15
diff changeset
1 open import Level
182
9f3c0e0b2bc9 remove ordinal-definable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 180
diff changeset
2 module OD where
3
e7990ff544bf reocrd ZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
14
e11e95d5ddee separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 11
diff changeset
4 open import zf
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
5 open import ordinal
23
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 22
diff changeset
6 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
14
e11e95d5ddee separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 11
diff changeset
7 open import Relation.Binary.PropositionalEquality
e11e95d5ddee separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 11
diff changeset
8 open import Data.Nat.Properties
6
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
9 open import Data.Empty
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
10 open import Relation.Nullary
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
11 open import Relation.Binary
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
12 open import Relation.Binary.Core
d9b704508281 isEquiv and isZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
13
27
bade0a35fdd9 OD, HOD, TC
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 26
diff changeset
14 -- Ordinal Definable Set
11
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 10
diff changeset
15
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
16 record OD {n : Level} : Set (suc n) where
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
17 field
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
18 def : (x : Ordinal {n} ) → Set n
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
19
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
20 open OD
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
21
44
fcac01485f32 od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 43
diff changeset
22 open Ordinal
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
23 open _∧_
44
fcac01485f32 od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 43
diff changeset
24
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
25 record _==_ {n : Level} ( a b : OD {n} ) : Set n where
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
26 field
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
27 eq→ : ∀ { x : Ordinal {n} } → def a x → def b x
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
28 eq← : ∀ { x : Ordinal {n} } → def b x → def a x
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
29
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
30 id : {n : Level} {A : Set n} → A → A
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
31 id x = x
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
32
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
33 eq-refl : {n : Level} { x : OD {n} } → x == x
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
34 eq-refl {n} {x} = record { eq→ = id ; eq← = id }
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
35
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
36 open _==_
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
37
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
38 eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
39 eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq }
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
40
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
41 eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
42 eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) }
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
43
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
44 ⇔→== : {n : Level} { x y : OD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
45 eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
46 eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
47
179
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
48 -- Ordinal in OD ( and ZFSet ) Transitive Set
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
49 Ord : { n : Level } → ( a : Ordinal {n} ) → OD {n}
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
50 Ord {n} a = record { def = λ y → y o< a }
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
51
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
52 od∅ : {n : Level} → OD {n}
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
53 od∅ {n} = Ord o∅
40
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 39
diff changeset
54
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
55 postulate
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
56 -- OD can be iso to a subset of Ordinal ( by means of Godel Set )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
57 od→ord : {n : Level} → OD {n} → Ordinal {n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
58 ord→od : {n : Level} → Ordinal {n} → OD {n}
166
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
59 c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
60 oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x
113
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 112
diff changeset
61 diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x
150
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
62 -- we should prove this in agda, but simply put here
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
63 ==→o≡ : {n : Level} → { x y : OD {suc n} } → (x == y) → x ≡ y
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
64 -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set
159
3675bd617ac8 infinite continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
65 -- o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x
3675bd617ac8 infinite continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
66 -- ord→od x ≡ Ord x results the same
100
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
67 -- supermum as Replacement Axiom
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
68 sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n}
98
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 97
diff changeset
69 sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ
111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
70 -- contra-position of mimimulity of supermum required in Power Set Axiom
165
d16b8bf29f4f minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
71 -- sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n}
d16b8bf29f4f minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
72 -- sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ))
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
73 -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ )
183
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 182
diff changeset
74 -- mimimul and x∋minimul is an Axiom of choice
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
75 minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n}
117
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
76 -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x )
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
77 x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) )
183
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 182
diff changeset
78 --
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
79 minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) )
123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 122
diff changeset
80
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
81 _∋_ : { n : Level } → ( a x : OD {n} ) → Set n
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
82 _∋_ {n} a x = def a ( od→ord x )
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
83
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
84 _c<_ : { n : Level } → ( x a : OD {n} ) → Set n
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
85 x c< a = a ∋ x
103
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
86
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
87 _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n)
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
88 a c≤ b = (a ≡ b) ∨ ( b ∋ a )
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
89
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
90 cseq : {n : Level} → OD {n} → OD {n}
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
91 cseq x = record { def = λ y → def x (osuc y) } where
113
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 112
diff changeset
92
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
93 def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
94 def-subst df refl refl = df
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
95
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
96 sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n}
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
97 sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )
95
f3da2c87cee0 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 94
diff changeset
98
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
99 sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → def ( sup-od ψ ) (od→ord ( ψ x ))
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
100 sup-c< {n} ψ {x} = def-subst {n} {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )}
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
101 lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
102 lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x)))
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
103 lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) )
28
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
104
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
105 otrans : {n : Level} {a x : Ordinal {n} } → def (Ord a) x → { y : Ordinal {n} } → y o< x → def (Ord a) y
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
106 otrans {n} {a} {x} x<a {y} y<x = ordtrans y<x x<a
123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 122
diff changeset
107
37
f10ceee99d00 ¬ ( y c< x ) → x ≡ od∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
108 ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n}
81
96c932d0145d simpler ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 80
diff changeset
109 ∅3 {n} {x} = TransFinite {n} c2 c3 x where
30
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
110 c0 : Nat → Ordinal {n} → Set n
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
111 c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n}
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
112 c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
113 c2 Zero not = refl
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
114 c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
115 ... | t with t (case1 ≤-refl )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
116 c2 (Suc lx) not | t | ()
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
117 c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ })
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
118 c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
119 ... | t with t (case2 Φ< )
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
120 c3 lx (Φ .lx) d not | t | ()
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
121 c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } )
34
c9ad0d97ce41 fix oridinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 33
diff changeset
122 ... | t with t (case2 (s< s<refl ) )
30
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
123 c3 lx (OSuc .lx x₁) d not | t | ()
3b0fdb95618e problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 29
diff changeset
124
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
125 ∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
126 ∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
127 ∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ<
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
128 ∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n)
37
f10ceee99d00 ¬ ( y c< x ) → x ≡ od∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 36
diff changeset
129
46
e584686a1307 == and ∅7
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 45
diff changeset
130 ord-iso : {n : Level} {y : Ordinal {n} } → record { lv = lv (od→ord (ord→od y)) ; ord = ord (od→ord (ord→od y)) } ≡ record { lv = lv y ; ord = ord y }
e584686a1307 == and ∅7
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 45
diff changeset
131 ord-iso = cong ( λ k → record { lv = lv k ; ord = ord k } ) diso
44
fcac01485f32 od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 43
diff changeset
132
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
133 -- avoiding lv != Zero error
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
134 orefl : {n : Level} → { x : OD {n} } → { y : Ordinal {n} } → od→ord x ≡ y → od→ord x ≡ y
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
135 orefl refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
136
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
137 ==-iso : {n : Level} → { x y : OD {n} } → ord→od (od→ord x) == ord→od (od→ord y) → x == y
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
138 ==-iso {n} {x} {y} eq = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
139 eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ;
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
140 eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
141 where
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
142 lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
143 lemma {x} {z} d = def-subst d oiso refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
144
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
145 =-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y)
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
146 =-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
147
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
148 ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
149 ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
150 lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
151 lemma ox ox refl = eq-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
153 o≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ord→od x == ord→od y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
154 o≡→== {n} {x} {.x} refl = eq-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
155
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
156 >→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
157 >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
158
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
159 c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
160 c≤-refl x = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
161
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
162 ∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a
91
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
163 ∋→o< {n} {a} {x} lt = t where
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
164 t : (od→ord x) o< (od→ord a)
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
165 t = c<→o< {suc n} {x} {a} lt
91
b4742cf4ef97 infinity axiom done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
166
150
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
167 o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n}
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
168 o∅≡od∅ {n} = ==→o≡ lemma where
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
169 lemma0 : {x : Ordinal} → def (ord→od o∅) x → def od∅ x
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
170 lemma0 {x} lt = o<-subst (c<→o< {suc n} {ord→od x} {ord→od o∅} (def-subst {suc n} {ord→od o∅} {x} lt refl (sym diso)) ) diso diso
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
171 lemma1 : {x : Ordinal} → def od∅ x → def (ord→od o∅) x
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
172 lemma1 (case1 ())
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
173 lemma1 (case2 ())
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
174 lemma : ord→od o∅ == od∅
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
175 lemma = record { eq→ = lemma0 ; eq← = lemma1 }
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
176
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
177 ord-od∅ : {n : Level} → od→ord (od∅ {suc n}) ≡ o∅ {suc n}
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
178 ord-od∅ {n} = sym ( subst (λ k → k ≡ od→ord (od∅ {suc n}) ) diso (cong ( λ k → od→ord k ) o∅≡od∅ ) )
80
461690d60d07 remove ∅-base-def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 79
diff changeset
179
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
180 o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x )
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
181 o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
182
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
183 o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y
111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 109
diff changeset
184 o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt)
54
33fb8228ace9 fix selection axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 53
diff changeset
185
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
186 ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ } == od∅ {n}
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
187 eq→ ∅0 {w} (lift ())
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
188 eq← ∅0 {w} (case1 ())
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
189 eq← ∅0 {w} (case2 ())
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
190
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
191 ∅< : {n : Level} → { x y : OD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} )
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
192 ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d
60
6a1f67a4cc6e dead end
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 59
diff changeset
193 ∅< {n} {x} {y} d eq | lift ()
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
194
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
195 ∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox
120
ac214eab1c3c inifinite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 119
diff changeset
196 ∅6 {n} {x} x∋x = o<¬≡ refl ( c<→o< {suc n} {x} {x} x∋x )
51
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 50
diff changeset
197
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
198 def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x
76
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
199 def-iso refl t = t
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
200
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
201 is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
202 is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
203 is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
204 is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ())
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 56
diff changeset
205
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
206 OrdP : {n : Level} → ( x : Ordinal {suc n} ) ( y : OD {suc n} ) → Dec ( Ord x ∋ y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
207 OrdP {n} x y with trio< x (od→ord y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
208 OrdP {n} x y | tri< a ¬b ¬c = no ¬c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
209 OrdP {n} x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
210 OrdP {n} x y | tri> ¬a ¬b c = yes c
119
6e264c78e420 infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
211
79
c07c548b2ac1 add some lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 78
diff changeset
212 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
94
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 93
diff changeset
213 -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n))
59
d13d1351a1fa lemma = cong₂ (λ x not → minimul x not ) oiso { }6
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 58
diff changeset
214
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
215 in-codomain : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n}
148
6e767ad3edc2 give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
216 in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) }
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
217
96
f239ffc27fd0 Power Set and L
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
218 -- Power Set of X ( or constructible by λ y → def X (od→ord y )
97
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
219
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
220 ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n}
140
312e27aa3cb5 remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 139
diff changeset
221 ZFSubset A x = record { def = λ y → def A y ∧ def x y } where
97
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
222
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
223 Def : {n : Level} → (A : OD {suc n}) → OD {suc n}
154
e51c23eb3803 union trying ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
224 Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) -- Ord x does not help ord-power→
96
f239ffc27fd0 Power Set and L
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
225
f239ffc27fd0 Power Set and L
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
226 -- Constructible Set on α
122
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
227 -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
228 -- L (Φ 0) = Φ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
229 -- L (OSuc lv n) = { Def ( L n ) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
230 -- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) )
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
231 L : {n : Level} → (α : Ordinal {suc n}) → OD {suc n}
97
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
232 L {n} record { lv = Zero ; ord = (Φ .0) } = od∅
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
233 L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) )
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
234 L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α )
121
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 120
diff changeset
235 cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx }))))
89
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 87
diff changeset
236
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
237 -- L0 : {n : Level} → (α : Ordinal {suc n}) → L (osuc α) ∋ L α
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
238 -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x
122
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 121
diff changeset
239
170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 169
diff changeset
240
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
241 OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
242 OD→ZF {n} = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
243 ZFSet = OD {suc n}
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
244 ; _∋_ = _∋_
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
245 ; _≈_ = _==_
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
246 ; ∅ = od∅
28
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
247 ; _,_ = _,_
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
248 ; Union = Union
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
249 ; Power = Power
28
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
250 ; Select = Select
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
251 ; Replace = Replace
161
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
252 ; infinite = infinite
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
253 ; isZF = isZF
28
f36e40d5d2c3 OD continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 27
diff changeset
254 } where
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
255 ZFSet = OD {suc n}
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
256 Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → Set (suc n) ) → OD {suc n}
156
3e7475fb28db differeent Union approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 155
diff changeset
257 Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) }
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
258 Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
259 Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
260 _,_ : OD {suc n} → OD {suc n} → OD {suc n}
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
261 x , y = Ord (omax (od→ord x) (od→ord y))
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
262 _∩_ : ( A B : ZFSet ) → ZFSet
145
f0fa9a755513 all done but ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 144
diff changeset
263 A ∩ B = record { def = λ x → def A x ∧ def B x }
156
3e7475fb28db differeent Union approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 155
diff changeset
264 Union : OD {suc n} → OD {suc n}
3e7475fb28db differeent Union approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 155
diff changeset
265 Union U = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((def U u) ∧ (def (ord→od u) x))) }
54
33fb8228ace9 fix selection axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 53
diff changeset
266 _∈_ : ( A B : ZFSet ) → Set (suc n)
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
267 A ∈ B = B ∋ A
54
33fb8228ace9 fix selection axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 53
diff changeset
268 _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n)
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
269 _⊆_ A B {x} = A ∋ x → B ∋ x
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
270 Power : OD {suc n} → OD {suc n}
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
271 Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x )
103
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
272 {_} : ZFSet → ZFSet
c8b79d303867 starting over HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 100
diff changeset
273 { x } = ( x , x )
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
274
161
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
275 data infinite-d : ( x : Ordinal {suc n} ) → Set (suc n) where
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
276 iφ : infinite-d o∅
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
277 isuc : {x : Ordinal {suc n} } → infinite-d x →
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
278 infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) ))
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
279
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
280 infinite : OD {suc n}
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
281 infinite = record { def = λ x → infinite-d x }
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
282
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
283 infixr 200 _∈_
96
f239ffc27fd0 Power Set and L
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
284 -- infixr 230 _∩_ _∪_
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
285 infixr 220 _⊆_
161
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
286 isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace infinite
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
287 isZF = record {
43
0d9b9db14361 equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 42
diff changeset
288 isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans }
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
289 ; pair = pair
72
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 71
diff changeset
290 ; union→ = union→
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 71
diff changeset
291 ; union← = union←
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
292 ; empty = empty
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
293 ; power→ = power→
76
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
294 ; power← = power←
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
295 ; extensionality = extensionality
183
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 182
diff changeset
296 ; ε-induction = ε-induction
78
9a7a64b2388c infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 77
diff changeset
297 ; infinity∅ = infinity∅
160
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 159
diff changeset
298 ; infinity = infinity
116
47541e86c6ac axiom of selection
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 115
diff changeset
299 ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y}
135
b60b6e8a57b0 otrans in repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 134
diff changeset
300 ; replacement← = replacement←
b60b6e8a57b0 otrans in repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 134
diff changeset
301 ; replacement→ = replacement→
183
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 182
diff changeset
302 ; choice-func = choice-func
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 182
diff changeset
303 ; choice = choice
29
fce60b99dc55 posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 28
diff changeset
304 } where
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
305
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
306 pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B)
87
296388c03358 split omax?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 84
diff changeset
307 proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B)
296388c03358 split omax?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 84
diff changeset
308 proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B)
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
309
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
310 empty : {n : Level } (x : OD {suc n} ) → ¬ (od∅ ∋ x)
109
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
311 empty x (case1 ())
dab56d357fa3 remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
312 empty x (case2 ())
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
313
151
b5a337fb7a6d recovering...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
314 ord-⊆ : ( t x : OD {suc n} ) → _⊆_ t (Ord (od→ord t )) {x}
b5a337fb7a6d recovering...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
315 ord-⊆ t x lt = c<→o< lt
154
e51c23eb3803 union trying ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 153
diff changeset
316 o<→c< : {x y : Ordinal {suc n}} {z : OD {suc n}}→ x o< y → _⊆_ (Ord x) (Ord y) {z}
155
53371f91ce63 union continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
317 o<→c< lt lt1 = ordtrans lt1 lt
53371f91ce63 union continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
318
53371f91ce63 union continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
319 ⊆→o< : {x y : Ordinal {suc n}} → (∀ (z : OD) → _⊆_ (Ord x) (Ord y) {z} ) → x o< osuc y
53371f91ce63 union continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
320 ⊆→o< {x} {y} lt with trio< x y
53371f91ce63 union continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
321 ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc
53371f91ce63 union continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
322 ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc
53371f91ce63 union continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
323 ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (ord→od y) (o<-subst c (sym diso) refl )
53371f91ce63 union continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 154
diff changeset
324 ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl ))
151
b5a337fb7a6d recovering...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
325
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
326 union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z
157
afc030b7c8d0 explict logical definition of Union failed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 156
diff changeset
327 union→ X z u xx not = ⊥-elim ( not (od→ord u) ( record { proj1 = proj1 xx
afc030b7c8d0 explict logical definition of Union failed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 156
diff changeset
328 ; proj2 = subst ( λ k → def k (od→ord z)) (sym oiso) (proj2 xx) } ))
159
3675bd617ac8 infinite continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 158
diff changeset
329 union← : (X z : OD) (X∋z : Union X ∋ z) → ¬ ( (u : OD ) → ¬ ((X ∋ u) ∧ (u ∋ z )))
166
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
330 union← X z UX∋z = TransFiniteExists _ lemma UX∋z where
165
d16b8bf29f4f minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
331 lemma : {y : Ordinal} → def X y ∧ def (ord→od y) (od→ord z) → ¬ ((u : OD) → ¬ (X ∋ u) ∧ (u ∋ z))
d16b8bf29f4f minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
332 lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → def X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx }
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
333
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
334 ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
335 ψiso {ψ} t refl = t
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
336 selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y)
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
337 selection {ψ} {X} {y} = record {
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
338 proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) }
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
339 ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso }
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
340 }
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
341 replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
342 replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
343 lemma : def (in-codomain X ψ) (od→ord (ψ x))
150
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
344 lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym oiso)} ))
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
345 replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y))
150
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
346 replacement→ {ψ} X x lt = contra-position lemma (lemma2 (proj2 lt)) where
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
347 lemma2 : ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (ord→od y))))
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
348 → ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y)))
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
349 lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where
150
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
350 lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (ord→od y))) → (ord→od (od→ord x) == ψ (ord→od y))
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
351 lemma3 {y} eq = subst (λ k → ord→od (od→ord x) == k ) oiso (o≡→== eq )
150
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
352 lemma : ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y)) )
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
353 lemma not y not2 = not (ord→od y) (subst (λ k → k == ψ (ord→od y)) oiso ( proj2 not2 ))
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
354
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
355 ---
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
356 --- Power Set
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
357 ---
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
358 --- First consider ordinals in OD
100
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
359 ---
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
360 --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
361 --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
362 --
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
363 --
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
364 ∩-≡ : { a b : OD {suc n} } → ({x : OD {suc n} } → (a ∋ x → b ∋ x)) → a == ( b ∩ a )
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
365 ∩-≡ {a} {b} inc = record {
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
366 eq→ = λ {x} x<a → record { proj2 = x<a ;
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
367 proj1 = def-subst {suc n} {_} {_} {b} {x} (inc (def-subst {suc n} {_} {_} {a} {_} x<a refl (sym diso) )) refl diso } ;
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
368 eq← = λ {x} x<a∩b → proj2 x<a∩b }
100
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
369 --
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
370 -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
371 -- Power A is a sup of ZFSubset A t, so Power A ∋ t
a402881cc341 add comment
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 99
diff changeset
372 --
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
373 ord-power← : (a : Ordinal ) (t : OD) → ({x : OD} → (t ∋ x → (Ord a) ∋ x)) → Def (Ord a) ∋ t
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
374 ord-power← a t t→A = def-subst {suc n} {_} {_} {Def (Ord a)} {od→ord t}
127
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 126
diff changeset
375 lemma refl (lemma1 lemma-eq )where
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
376 lemma-eq : ZFSubset (Ord a) t == t
97
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
377 eq→ lemma-eq {z} w = proj2 w
f2b579106770 power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 96
diff changeset
378 eq← lemma-eq {z} w = record { proj2 = w ;
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
379 proj1 = def-subst {suc n} {_} {_} {(Ord a)} {z}
126
1114081eb51f power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 125
diff changeset
380 ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso }
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
381 lemma1 : {n : Level } {a : Ordinal {suc n}} { t : OD {suc n}}
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
382 → (eq : ZFSubset (Ord a) t == t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t
150
ebcbfd9d9c8e fix some
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
383 lemma1 {n} {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (==→o≡ eq ))
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
384 lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x)))
98
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 97
diff changeset
385 lemma = sup-o<
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
386
179
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
387 -- double-neg-eilm : {n : Level } {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic
144
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
388 --
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
389 -- Every set in OD is a subset of Ordinals
3ba37037faf4 Union again
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 143
diff changeset
390 --
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
391 -- Power A = Replace (Def (Ord (od→ord A))) ( λ y → A ∩ y )
166
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
392
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
393 -- we have oly double negation form because of the replacement axiom
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
394 --
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
395 power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x)
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
396 power→ A t P∋t {x} t∋x = TransFiniteExists _ lemma5 lemma4 where
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
397 a = od→ord A
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
398 lemma2 : ¬ ( (y : OD) → ¬ (t == (A ∩ y)))
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
399 lemma2 = replacement→ (Def (Ord (od→ord A))) t P∋t
166
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
400 lemma3 : (y : OD) → t == ( A ∩ y ) → ¬ ¬ (A ∋ x)
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
401 lemma3 y eq not = not (proj1 (eq→ eq t∋x))
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
402 lemma4 : ¬ ((y : Ordinal) → ¬ (t == (A ∩ ord→od y)))
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
403 lemma4 not = lemma2 ( λ y not1 → not (od→ord y) (subst (λ k → t == ( A ∩ k )) (sym oiso) not1 ))
166
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
404 lemma5 : {y : Ordinal} → t == (A ∩ ord→od y) → ¬ ¬ (def A (od→ord x))
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
405 lemma5 {y} eq not = (lemma3 (ord→od y) eq) not
ea0e7927637a use double negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 165
diff changeset
406
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
407 power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
408 power← A t t→A = record { proj1 = lemma1 ; proj2 = lemma2 } where
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
409 a = od→ord A
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
410 lemma0 : {x : OD} → t ∋ x → Ord a ∋ x
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
411 lemma0 {x} t∋x = c<→o< (t→A t∋x)
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
412 lemma3 : Def (Ord a) ∋ t
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
413 lemma3 = ord-power← a t lemma0
152
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
414 lt1 : od→ord (A ∩ ord→od (od→ord t)) o< sup-o (λ x → od→ord (A ∩ ord→od x))
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
415 lt1 = sup-o< {suc n} {λ x → od→ord (A ∩ ord→od x)} {od→ord t}
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
416 lemma4 : (A ∩ ord→od (od→ord t)) ≡ t
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
417 lemma4 = let open ≡-Reasoning in begin
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
418 A ∩ ord→od (od→ord t)
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
419 ≡⟨ cong (λ k → A ∩ k) oiso ⟩
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
420 A ∩ t
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
421 ≡⟨ sym (==→o≡ ( ∩-≡ t→A )) ⟩
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
422 t
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
423
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
424 lemma1 : od→ord t o< sup-o (λ x → od→ord (A ∩ ord→od x))
152
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
425 lemma1 = subst (λ k → od→ord k o< sup-o (λ x → od→ord (A ∩ ord→od x)))
996a67042f50 power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 151
diff changeset
426 lemma4 (sup-o< {suc n} {λ x → od→ord (A ∩ ord→od x)} {od→ord t})
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
427 lemma2 : def (in-codomain (Def (Ord (od→ord A))) (_∩_ A)) (od→ord t)
151
b5a337fb7a6d recovering...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
428 lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma6 }) ) where
b5a337fb7a6d recovering...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
429 lemma6 : od→ord t ≡ od→ord (A ∩ ord→od (od→ord t))
b5a337fb7a6d recovering...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
430 lemma6 = cong ( λ k → od→ord k ) (==→o≡ (subst (λ k → t == (A ∩ k)) (sym oiso) ( ∩-≡ t→A )))
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
431
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
432 regularity : (x : OD) (not : ¬ (x == od∅)) →
115
277c2f3b8acb Select declaration
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 114
diff changeset
433 (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅)
117
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
434 proj1 (regularity x not ) = x∋minimul x not
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
435 proj2 (regularity x not ) = record { eq→ = lemma1 ; eq← = λ {y} d → lemma2 {y} d } where
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
436 lemma1 : {x₁ : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ → def od∅ x₁
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
437 lemma1 {x₁} s = ⊥-elim ( minimul-1 x not (ord→od x₁) lemma3 ) where
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
438 lemma3 : def (minimul x not) (od→ord (ord→od x₁)) ∧ def x (od→ord (ord→od x₁))
142
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
439 lemma3 = record { proj1 = def-subst {suc n} {_} {_} {minimul x not} {_} (proj1 s) refl (sym diso)
c30bc9f5bd0d Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 141
diff changeset
440 ; proj2 = proj2 (proj2 s) }
117
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
441 lemma2 : {x₁ : Ordinal} → def od∅ x₁ → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁
a4c97390d312 minimum assuption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
442 lemma2 {y} d = ⊥-elim (empty (ord→od y) (def-subst {suc n} {_} {_} {od∅} {od→ord (ord→od y)} d refl (sym diso) ))
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
443
141
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 140
diff changeset
444 extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B
76
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
445 eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d
8e8f54e7a030 extensionality done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 74
diff changeset
446 eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d
129
2a5519dcc167 ord power set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 128
diff changeset
447
161
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
448 infinity∅ : infinite ∋ od∅ {suc n}
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
449 infinity∅ = def-subst {suc n} {_} {_} {infinite} {od→ord (od∅ {suc n})} iφ refl lemma where
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
450 lemma : o∅ ≡ od→ord od∅
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
451 lemma = let open ≡-Reasoning in begin
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
452 o∅
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
453 ≡⟨ sym diso ⟩
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
454 od→ord ( ord→od o∅ )
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
455 ≡⟨ cong ( λ k → od→ord k ) o∅≡od∅ ⟩
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
456 od→ord od∅
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
457
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
458 infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x ))
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
459 infinity x lt = def-subst {suc n} {_} {_} {infinite} {od→ord (Union (x , (x , x )))} ( isuc {od→ord x} lt ) refl lemma where
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
460 lemma : od→ord (Union (ord→od (od→ord x) , (ord→od (od→ord x) , ord→od (od→ord x))))
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
461 ≡ od→ord (Union (x , (x , x)))
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
462 lemma = cong (λ k → od→ord (Union ( k , ( k , k ) ))) oiso
4c704b7a62e4 ininite done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 160
diff changeset
463
179
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
464 -- Axiom of choice ( is equivalent to the existence of minimul in our case )
162
b06f5d2f34b1 Axiom of choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 161
diff changeset
465 -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ]
b06f5d2f34b1 Axiom of choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 161
diff changeset
466 choice-func : (X : OD {suc n} ) → {x : OD } → ¬ ( x == od∅ ) → ( X ∋ x ) → OD
b06f5d2f34b1 Axiom of choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 161
diff changeset
467 choice-func X {x} not X∋x = minimul x not
b06f5d2f34b1 Axiom of choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 161
diff changeset
468 choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A
b06f5d2f34b1 Axiom of choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 161
diff changeset
469 choice X {A} X∋A not = x∋minimul A not
78
9a7a64b2388c infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 77
diff changeset
470
176
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
471 -- another form of regularity
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
472 --
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
473 ε-induction : {n m : Level} { ψ : OD {suc n} → Set m}
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
474 → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x )
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
475 → (x : OD {suc n} ) → ψ x
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
476 ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (lv (osuc (od→ord x))) (ord (osuc (od→ord x))) <-osuc) where
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
477 ε-induction-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly }
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
478 → (ly < lx) ∨ (oy d< ox ) → ψ (ord→od (record { lv = ly ; ord = oy } ) )
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
479 ε-induction-ord Zero (Φ 0) (case1 ())
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
480 ε-induction-ord Zero (Φ 0) (case2 ())
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
481 ε-induction-ord lx (OSuc lx ox) {ly} {oy} y<x =
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
482 ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord lx ox (lemma y lt ))) where
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
483 lemma : (y : OD) → ord→od record { lv = ly ; ord = oy } ∋ y → od→ord y o< record { lv = lx ; ord = ox }
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
484 lemma y lt with osuc-≡< y<x
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
485 lemma y lt | case1 refl = o<-subst (c<→o< lt) refl diso
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
486 lemma y lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
487 ε-induction-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} (case1 y<sox ) =
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
488 ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → lemma y lt ) where
179
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
489 --
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
490 -- if lv of z if less than x Ok
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
491 -- else lv z = lv x. We can create OSuc of z which is larger than z and less than x in lemma
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
492 --
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
493 -- lx Suc lx (1) lz(a) <lx by case1
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
494 -- ly(1) ly(2) (2) lz(b) <lx by case1
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
495 -- lz(a) lz(b) lz(c) lz(c) <lx by case2 ( ly==lz==lx)
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
496 --
176
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
497 lemma0 : { lx ly : Nat } → ly < Suc lx → lx < ly → ⊥
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
498 lemma0 {Suc lx} {Suc ly} (s≤s lt1) (s≤s lt2) = lemma0 lt1 lt2
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
499 lemma1 : {n : Level } {ly : Nat} {oy : OrdinalD {suc n} ly} → lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) ≡ ly
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
500 lemma1 {n} {ly} {oy} = let open ≡-Reasoning in begin
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
501 lv (od→ord (ord→od (record { lv = ly ; ord = oy })))
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
502 ≡⟨ cong ( λ k → lv k ) diso ⟩
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
503 lv (record { lv = ly ; ord = oy })
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
504 ≡⟨⟩
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
505 ly
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
506
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
507 lemma : (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → ψ z
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
508 lemma z lt with c<→o< {suc n} {z} {ord→od (record { lv = ly ; ord = oy })} lt
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
509 lemma z lt | case1 lz<ly with <-cmp lx ly
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
510 lemma z lt | case1 lz<ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen
180
11490a3170d4 new ordinal-definable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 179
diff changeset
511 lemma z lt | case1 lz<ly | tri≈ ¬a refl ¬c = -- ly(1)
176
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
512 subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → lv (od→ord z) < k ) lemma1 lz<ly ) ))
180
11490a3170d4 new ordinal-definable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 179
diff changeset
513 lemma z lt | case1 lz<ly | tri> ¬a ¬b c = -- lz(a)
176
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
514 subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (<-trans lz<ly (subst (λ k → k < lx ) (sym lemma1) c))))
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
515 lemma z lt | case2 lz=ly with <-cmp lx ly
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
516 lemma z lt | case2 lz=ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen
180
11490a3170d4 new ordinal-definable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 179
diff changeset
517 lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly -- lz(b)
179
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
518 ... | eq = subst (λ k → ψ k ) oiso
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
519 (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c )))
180
11490a3170d4 new ordinal-definable
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 179
diff changeset
520 lemma z lt | case2 lz=ly | tri≈ ¬a lx=ly ¬c with d<→lv lz=ly -- lz(c)
179
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
521 ... | eq = lemma6 {ly} {Φ lx} {oy} lx=ly (sym (subst (λ k → lv (od→ord z) ≡ k) lemma1 eq)) where
176
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
522 lemma5 : (ox : OrdinalD lx) → (lv (od→ord z) < lx) ∨ (ord (od→ord z) d< ox) → ψ z
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
523 lemma5 ox lt = subst (λ k → ψ k ) oiso (ε-induction-ord lx ox lt )
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
524 lemma6 : { ly : Nat } { ox : OrdinalD {suc n} lx } { oy : OrdinalD {suc n} ly } →
179
aa89d1b8ce96 fix comments
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 176
diff changeset
525 lx ≡ ly → ly ≡ lv (od→ord z) → ψ z
176
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
526 lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s<refl)
ecb329ba38ac ε-induction done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 175
diff changeset
527