Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate OD.agda @ 290:359402cc6c3d
definition of filter
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 Jun 2020 19:19:16 +0900 |
parents | d9d3654baee1 |
children | ef93c56ad311 |
rev | line source |
---|---|
16 | 1 open import Level |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
2 open import Ordinals |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
3 module OD {n : Level } (O : Ordinals {n} ) where |
3 | 4 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
5 open import zf |
23 | 6 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
7 open import Relation.Binary.PropositionalEquality |
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
8 open import Data.Nat.Properties |
6 | 9 open import Data.Empty |
10 open import Relation.Nullary | |
11 open import Relation.Binary | |
12 open import Relation.Binary.Core | |
13 | |
213
22d435172d1a
separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
210
diff
changeset
|
14 open import logic |
22d435172d1a
separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
210
diff
changeset
|
15 open import nat |
22d435172d1a
separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
210
diff
changeset
|
16 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
17 open inOrdinal O |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
18 |
27 | 19 -- Ordinal Definable Set |
11 | 20 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
21 record OD : Set (suc n ) where |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
22 field |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
23 def : (x : Ordinal ) → Set n |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
24 |
141 | 25 open OD |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
26 |
120 | 27 open _∧_ |
213
22d435172d1a
separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
210
diff
changeset
|
28 open _∨_ |
22d435172d1a
separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
210
diff
changeset
|
29 open Bool |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
30 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
31 record _==_ ( a b : OD ) : Set n where |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
32 field |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
33 eq→ : ∀ { x : Ordinal } → def a x → def b x |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
34 eq← : ∀ { x : Ordinal } → def b x → def a x |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
35 |
234
e06b76e5b682
ac from LEM in abstract ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
228
diff
changeset
|
36 id : {A : Set n} → A → A |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
37 id x = x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
38 |
271 | 39 ==-refl : { x : OD } → x == x |
40 ==-refl {x} = record { eq→ = id ; eq← = id } | |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
41 |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
42 open _==_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
43 |
271 | 44 ==-trans : { x y z : OD } → x == y → y == z → x == z |
45 ==-trans x=y y=z = record { eq→ = λ {m} t → eq→ y=z (eq→ x=y t) ; eq← = λ {m} t → eq← x=y (eq← y=z t) } | |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
46 |
271 | 47 ==-sym : { x y : OD } → x == y → y == x |
48 ==-sym x=y = record { eq→ = λ {m} t → eq← x=y t ; eq← = λ {m} t → eq→ x=y t } | |
49 | |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
50 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
51 ⇔→== : { x y : OD } → ( {z : Ordinal } → def x z ⇔ def y z) → x == y |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
52 eq→ ( ⇔→== {x} {y} eq ) {z} m = proj1 eq m |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
53 eq← ( ⇔→== {x} {y} eq ) {z} m = proj2 eq m |
120 | 54 |
277
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
55 -- next assumptions are our axiom |
290 | 56 -- In classical Set Theory, HOD is used, as a subset of OD, |
277
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
57 -- HOD = { x | TC x ⊆ OD } |
290 | 58 -- where TC x is a transitive clusure of x, i.e. Union of all elemnts of all subset of x. |
59 -- This is not possible because we don't have V yet. | |
60 -- We simply assume V=OD here. | |
61 -- | |
62 -- We also assumes ODs are isomorphic to Ordinals, which is ususally proved by Goedel number tricks. | |
63 -- ODs have an ovbious maximum, but Ordinals are not. This means, od→ord is not an on-to mapping. | |
64 -- | |
65 -- ==→o≡ is necessary to prove axiom of extensionality. | |
66 -- | |
67 -- In classical Set Theory, sup is defined by Uion. Since we are working on constructive logic, | |
68 -- we need explict assumption on sup. | |
277
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
69 |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
70 record ODAxiom : Set (suc n) where |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
71 -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
72 field |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
73 od→ord : OD → Ordinal |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
74 ord→od : Ordinal → OD |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
75 c<→o< : {x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
76 oiso : {x : OD } → ord→od ( od→ord x ) ≡ x |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
77 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
78 ==→o≡ : { x y : OD } → (x == y) → x ≡ y |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
79 -- supermum as Replacement Axiom ( corresponding Ordinal of OD has maximum ) |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
80 sup-o : ( OD → Ordinal ) → Ordinal |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
81 sup-o< : { ψ : OD → Ordinal } → ∀ {x : OD } → ψ x o< sup-o ψ |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
82 -- contra-position of mimimulity of supermum required in Power Set Axiom which we don't use |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
83 -- sup-x : {n : Level } → ( OD → Ordinal ) → Ordinal |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
84 -- sup-lb : {n : Level } → { ψ : OD → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
85 |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
86 postulate odAxiom : ODAxiom |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
87 open ODAxiom odAxiom |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
88 |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
89 data One : Set n where |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
90 OneObj : One |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
91 |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
92 -- Ordinals in OD , the maximum |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
93 Ords : OD |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
94 Ords = record { def = λ x → One } |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
95 |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
96 maxod : {x : OD} → od→ord x o< od→ord Ords |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
97 maxod {x} = c<→o< OneObj |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
98 |
179 | 99 -- Ordinal in OD ( and ZFSet ) Transitive Set |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
100 Ord : ( a : Ordinal ) → OD |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
101 Ord a = record { def = λ y → y o< a } |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
102 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
103 od∅ : OD |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
104 od∅ = Ord o∅ |
40 | 105 |
258 | 106 |
107 o<→c<→OD=Ord : ( {x y : Ordinal } → x o< y → def (ord→od y) x ) → {x : OD } → x ≡ Ord (od→ord x) | |
108 o<→c<→OD=Ord o<→c< {x} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where | |
109 lemma1 : {y : Ordinal} → def x y → def (Ord (od→ord x)) y | |
110 lemma1 {y} lt = subst ( λ k → k o< od→ord x ) diso (c<→o< {ord→od y} {x} (subst (λ k → def x k ) (sym diso) lt)) | |
111 lemma2 : {y : Ordinal} → def (Ord (od→ord x)) y → def x y | |
112 lemma2 {y} lt = subst (λ k → def k y ) oiso (o<→c< {y} {od→ord x} lt ) | |
123 | 113 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
114 _∋_ : ( a x : OD ) → Set n |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
115 _∋_ a x = def a ( od→ord x ) |
95 | 116 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
117 _c<_ : ( x a : OD ) → Set n |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
118 x c< a = a ∋ x |
103 | 119 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
120 cseq : {n : Level} → OD → OD |
140
312e27aa3cb5
remove otrans again. start over
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
139
diff
changeset
|
121 cseq x = record { def = λ y → def x (osuc y) } where |
113 | 122 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
123 def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x |
95 | 124 def-subst df refl refl = df |
125 | |
260
8b85949bde00
sup with limit give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
259
diff
changeset
|
126 sup-od : ( OD → OD ) → OD |
276 | 127 sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ x)) ) |
95 | 128 |
260
8b85949bde00
sup with limit give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
259
diff
changeset
|
129 sup-c< : ( ψ : OD → OD ) → ∀ {x : OD } → def ( sup-od ψ ) (od→ord ( ψ x )) |
276 | 130 sup-c< ψ {x} = def-subst {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ x)) )} {od→ord ( ψ x )} |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
131 lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where |
276 | 132 lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ x)) |
260
8b85949bde00
sup with limit give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
259
diff
changeset
|
133 lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst (sup-o< ) refl (sym diso) ) |
28 | 134 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
135 otrans : {n : Level} {a x y : Ordinal } → def (Ord a) x → def (Ord x) y → def (Ord a) y |
187 | 136 otrans x<a y<x = ordtrans y<x x<a |
123 | 137 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
138 def→o< : {X : OD } → {x : Ordinal } → def X x → x o< od→ord X |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
139 def→o< {X} {x} lt = o<-subst {_} {_} {x} {od→ord X} ( c<→o< ( def-subst {X} {x} lt (sym oiso) (sym diso) )) diso diso |
44
fcac01485f32
od→lv : {n : Level} → OD {n} → Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
43
diff
changeset
|
140 |
258 | 141 |
51 | 142 -- avoiding lv != Zero error |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
143 orefl : { x : OD } → { y : Ordinal } → od→ord x ≡ y → od→ord x ≡ y |
51 | 144 orefl refl = refl |
145 | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
146 ==-iso : { x y : OD } → ord→od (od→ord x) == ord→od (od→ord y) → x == y |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
147 ==-iso {x} {y} eq = record { |
51 | 148 eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ; |
149 eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) } | |
150 where | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
151 lemma : {x : OD } {z : Ordinal } → def (ord→od (od→ord x)) z → def x z |
51 | 152 lemma {x} {z} d = def-subst d oiso refl |
153 | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
154 =-iso : {x y : OD } → (x == y) ≡ (ord→od (od→ord x) == y) |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
155 =-iso {_} {y} = cong ( λ k → k == y ) (sym oiso) |
57 | 156 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
157 ord→== : { x y : OD } → od→ord x ≡ od→ord y → x == y |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
158 ord→== {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
159 lemma : ( ox oy : Ordinal ) → ox ≡ oy → (ord→od ox) == (ord→od oy) |
271 | 160 lemma ox ox refl = ==-refl |
51 | 161 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
162 o≡→== : { x y : Ordinal } → x ≡ y → ord→od x == ord→od y |
271 | 163 o≡→== {x} {.x} refl = ==-refl |
51 | 164 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
165 o∅≡od∅ : ord→od (o∅ ) ≡ od∅ |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
166 o∅≡od∅ = ==→o≡ lemma where |
150 | 167 lemma0 : {x : Ordinal} → def (ord→od o∅) x → def od∅ x |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
168 lemma0 {x} lt = o<-subst (c<→o< {ord→od x} {ord→od o∅} (def-subst {ord→od o∅} {x} lt refl (sym diso)) ) diso diso |
150 | 169 lemma1 : {x : Ordinal} → def od∅ x → def (ord→od o∅) x |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
170 lemma1 {x} lt = ⊥-elim (¬x<0 lt) |
150 | 171 lemma : ord→od o∅ == od∅ |
172 lemma = record { eq→ = lemma0 ; eq← = lemma1 } | |
173 | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
174 ord-od∅ : od→ord (od∅ ) ≡ o∅ |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
175 ord-od∅ = sym ( subst (λ k → k ≡ od→ord (od∅ ) ) diso (cong ( λ k → od→ord k ) o∅≡od∅ ) ) |
80 | 176 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
177 ∅0 : record { def = λ x → Lift n ⊥ } == od∅ |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
178 eq→ ∅0 {w} (lift ()) |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
179 eq← ∅0 {w} lt = lift (¬x<0 lt) |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
180 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
181 ∅< : { x y : OD } → def x (od→ord y ) → ¬ ( x == od∅ ) |
271 | 182 ∅< {x} {y} d eq with eq→ (==-trans eq (==-sym ∅0) ) d |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
183 ∅< {x} {y} d eq | lift () |
57 | 184 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
185 ∅6 : { x : OD } → ¬ ( x ∋ x ) -- no Russel paradox |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
186 ∅6 {x} x∋x = o<¬≡ refl ( c<→o< {x} {x} x∋x ) |
51 | 187 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
188 def-iso : {A B : OD } {x y : Ordinal } → x ≡ y → (def A y → def B y) → def A x → def B x |
76 | 189 def-iso refl t = t |
190 | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
191 is-o∅ : ( x : Ordinal ) → Dec ( x ≡ o∅ ) |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
192 is-o∅ x with trio< x o∅ |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
193 is-o∅ x | tri< a ¬b ¬c = no ¬b |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
194 is-o∅ x | tri≈ ¬a b ¬c = yes b |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
195 is-o∅ x | tri> ¬a ¬b c = no ¬b |
57 | 196 |
254 | 197 _,_ : OD → OD → OD |
198 x , y = record { def = λ t → (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) } -- Ord (omax (od→ord x) (od→ord y)) | |
188
1f2c8b094908
axiom of choice → p ∨ ¬ p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
187
diff
changeset
|
199 |
79 | 200 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
201 -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) |
59
d13d1351a1fa
lemma = cong₂ (λ x not → minimul x not ) oiso { }6
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
58
diff
changeset
|
202 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
203 in-codomain : (X : OD ) → ( ψ : OD → OD ) → OD |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
204 in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } |
141 | 205 |
96 | 206 -- Power Set of X ( or constructible by λ y → def X (od→ord y ) |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
207 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
208 ZFSubset : (A x : OD ) → OD |
191
9eb6a8691f02
choice function cannot jump between ordinal level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
190
diff
changeset
|
209 ZFSubset A x = record { def = λ y → def A y ∧ def x y } -- roughly x = A → Set |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
210 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
211 Def : (A : OD ) → OD |
276 | 212 Def A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A x) ) ) |
190 | 213 |
271 | 214 -- _⊆_ : ( A B : OD ) → ∀{ x : OD } → Set n |
215 -- _⊆_ A B {x} = A ∋ x → B ∋ x | |
216 | |
217 record _⊆_ ( A B : OD ) : Set (suc n) where | |
218 field | |
219 incl : { x : OD } → A ∋ x → B ∋ x | |
220 | |
221 open _⊆_ | |
190 | 222 |
223 infixr 220 _⊆_ | |
224 | |
271 | 225 subset-lemma : {A x : OD } → ( {y : OD } → x ∋ y → ZFSubset A x ∋ y ) ⇔ ( x ⊆ A ) |
226 subset-lemma {A} {x} = record { | |
227 proj1 = λ lt → record { incl = λ x∋z → proj1 (lt x∋z) } | |
228 ; proj2 = λ x⊆A lt → record { proj1 = incl x⊆A lt ; proj2 = lt } | |
190 | 229 } |
230 | |
261
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
231 open import Data.Unit |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
232 |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
233 ε-induction : { ψ : OD → Set (suc n)} |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
234 → ( {x : OD } → ({ y : OD } → x ∋ y → ψ y ) → ψ x ) |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
235 → (x : OD ) → ψ x |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
236 ε-induction {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (osuc (od→ord x)) <-osuc ) where |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
237 induction : (ox : Ordinal) → ((oy : Ordinal) → oy o< ox → ψ (ord→od oy)) → ψ (ord→od ox) |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
238 induction ox prev = ind ( λ {y} lt → subst (λ k → ψ k ) oiso (prev (od→ord y) (o<-subst (c<→o< lt) refl diso ))) |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
239 ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (ord→od oy) |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
240 ε-induction-ord ox {oy} lt = TransFinite {λ oy → ψ (ord→od oy)} induction oy |
d9d178d1457c
ε-induction from TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
260
diff
changeset
|
241 |
262 | 242 -- minimal-2 : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) |
243 -- minimal-2 x ne y = contra-position ( ε-induction (λ {z} ind → {!!} ) x ) ( λ p → {!!} ) | |
244 | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
245 OD→ZF : ZF |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
246 OD→ZF = record { |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
247 ZFSet = OD |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
248 ; _∋_ = _∋_ |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
42
diff
changeset
|
249 ; _≈_ = _==_ |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
250 ; ∅ = od∅ |
28 | 251 ; _,_ = _,_ |
252 ; Union = Union | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
253 ; Power = Power |
28 | 254 ; Select = Select |
255 ; Replace = Replace | |
161 | 256 ; infinite = infinite |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
257 ; isZF = isZF |
28 | 258 } where |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
259 ZFSet = OD |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
260 Select : (X : OD ) → ((x : OD ) → Set n ) → OD |
156
3e7475fb28db
differeent Union approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
155
diff
changeset
|
261 Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
262 Replace : OD → (OD → OD ) → OD |
276 | 263 Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ x))) ∧ def (in-codomain X ψ) x } |
144 | 264 _∩_ : ( A B : ZFSet ) → ZFSet |
145 | 265 A ∩ B = record { def = λ x → def A x ∧ def B x } |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
266 Union : OD → OD |
156
3e7475fb28db
differeent Union approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
155
diff
changeset
|
267 Union U = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((def U u) ∧ (def (ord→od u) x))) } |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
268 _∈_ : ( A B : ZFSet ) → Set n |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
269 A ∈ B = B ∋ A |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
270 Power : OD → OD |
129 | 271 Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) |
277
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
272 -- {_} : ZFSet → ZFSet |
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
276
diff
changeset
|
273 -- { x } = ( x , x ) |
109
dab56d357fa3
remove o<→c< and add otrans in OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
103
diff
changeset
|
274 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
275 data infinite-d : ( x : Ordinal ) → Set n where |
161 | 276 iφ : infinite-d o∅ |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
277 isuc : {x : Ordinal } → infinite-d x → |
161 | 278 infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) |
279 | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
280 infinite : OD |
161 | 281 infinite = record { def = λ x → infinite-d x } |
282 | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
283 infixr 200 _∈_ |
96 | 284 -- infixr 230 _∩_ _∪_ |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
285 isZF : IsZF (OD ) _∋_ _==_ od∅ _,_ Union Power Select Replace infinite |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
286 isZF = record { |
271 | 287 isEquivalence = record { refl = ==-refl ; sym = ==-sym; trans = ==-trans } |
247 | 288 ; pair→ = pair→ |
289 ; pair← = pair← | |
72 | 290 ; union→ = union→ |
291 ; union← = union← | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
292 ; empty = empty |
129 | 293 ; power→ = power→ |
76 | 294 ; power← = power← |
186 | 295 ; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} |
274 | 296 ; ε-induction = ε-induction |
78
9a7a64b2388c
infinite and replacement begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
77
diff
changeset
|
297 ; infinity∅ = infinity∅ |
160 | 298 ; infinity = infinity |
116 | 299 ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} |
135 | 300 ; replacement← = replacement← |
301 ; replacement→ = replacement→ | |
274 | 302 -- ; choice-func = choice-func |
303 -- ; choice = choice | |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
304 } where |
129 | 305 |
247 | 306 pair→ : ( x y t : ZFSet ) → (x , y) ∋ t → ( t == x ) ∨ ( t == y ) |
307 pair→ x y t (case1 t≡x ) = case1 (subst₂ (λ j k → j == k ) oiso oiso (o≡→== t≡x )) | |
308 pair→ x y t (case2 t≡y ) = case2 (subst₂ (λ j k → j == k ) oiso oiso (o≡→== t≡y )) | |
309 | |
310 pair← : ( x y t : ZFSet ) → ( t == x ) ∨ ( t == y ) → (x , y) ∋ t | |
311 pair← x y t (case1 t==x) = case1 (cong (λ k → od→ord k ) (==→o≡ t==x)) | |
312 pair← x y t (case2 t==y) = case2 (cong (λ k → od→ord k ) (==→o≡ t==y)) | |
313 | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
314 empty : (x : OD ) → ¬ (od∅ ∋ x) |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
315 empty x = ¬x<0 |
129 | 316 |
271 | 317 o<→c< : {x y : Ordinal } → x o< y → (Ord x) ⊆ (Ord y) |
318 o<→c< lt = record { incl = λ z → ordtrans z lt } | |
155 | 319 |
271 | 320 ⊆→o< : {x y : Ordinal } → (Ord x) ⊆ (Ord y) → x o< osuc y |
155 | 321 ⊆→o< {x} {y} lt with trio< x y |
322 ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc | |
323 ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc | |
271 | 324 ⊆→o< {x} {y} lt | tri> ¬a ¬b c with (incl lt) (o<-subst c (sym diso) refl ) |
155 | 325 ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl )) |
151 | 326 |
144 | 327 union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z |
157
afc030b7c8d0
explict logical definition of Union failed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
156
diff
changeset
|
328 union→ X z u xx not = ⊥-elim ( not (od→ord u) ( record { proj1 = proj1 xx |
afc030b7c8d0
explict logical definition of Union failed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
156
diff
changeset
|
329 ; proj2 = subst ( λ k → def k (od→ord z)) (sym oiso) (proj2 xx) } )) |
159 | 330 union← : (X z : OD) (X∋z : Union X ∋ z) → ¬ ( (u : OD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) |
258 | 331 union← X z UX∋z = FExists _ lemma UX∋z where |
165 | 332 lemma : {y : Ordinal} → def X y ∧ def (ord→od y) (od→ord z) → ¬ ((u : OD) → ¬ (X ∋ u) ∧ (u ∋ z)) |
333 lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → def X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } | |
144 | 334 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
335 ψiso : {ψ : OD → Set n} {x y : OD } → ψ x → x ≡ y → ψ y |
144 | 336 ψiso {ψ} t refl = t |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
337 selection : {ψ : OD → Set n} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) |
144 | 338 selection {ψ} {X} {y} = record { |
339 proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } | |
340 ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } | |
341 } | |
342 replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x | |
260
8b85949bde00
sup with limit give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
259
diff
changeset
|
343 replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where |
144 | 344 lemma : def (in-codomain X ψ) (od→ord (ψ x)) |
150 | 345 lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym oiso)} )) |
144 | 346 replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y)) |
150 | 347 replacement→ {ψ} X x lt = contra-position lemma (lemma2 (proj2 lt)) where |
348 lemma2 : ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (ord→od y)))) | |
349 → ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y))) | |
144 | 350 lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where |
150 | 351 lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (ord→od y))) → (ord→od (od→ord x) == ψ (ord→od y)) |
144 | 352 lemma3 {y} eq = subst (λ k → ord→od (od→ord x) == k ) oiso (o≡→== eq ) |
150 | 353 lemma : ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y)) ) |
354 lemma not y not2 = not (ord→od y) (subst (λ k → k == ψ (ord→od y)) oiso ( proj2 not2 )) | |
144 | 355 |
356 --- | |
357 --- Power Set | |
358 --- | |
359 --- First consider ordinals in OD | |
100 | 360 --- |
361 --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A | |
362 -- | |
363 -- | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
364 ∩-≡ : { a b : OD } → ({x : OD } → (a ∋ x → b ∋ x)) → a == ( b ∩ a ) |
142 | 365 ∩-≡ {a} {b} inc = record { |
366 eq→ = λ {x} x<a → record { proj2 = x<a ; | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
367 proj1 = def-subst {_} {_} {b} {x} (inc (def-subst {_} {_} {a} {_} x<a refl (sym diso) )) refl diso } ; |
142 | 368 eq← = λ {x} x<a∩b → proj2 x<a∩b } |
100 | 369 -- |
258 | 370 -- Transitive Set case |
371 -- we have t ∋ x → Ord a ∋ x means t is a subset of Ord a, that is ZFSubset (Ord a) t == t | |
372 -- Def (Ord a) is a sup of ZFSubset (Ord a) t, so Def (Ord a) ∋ t | |
373 -- Def A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) | |
100 | 374 -- |
141 | 375 ord-power← : (a : Ordinal ) (t : OD) → ({x : OD} → (t ∋ x → (Ord a) ∋ x)) → Def (Ord a) ∋ t |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
376 ord-power← a t t→A = def-subst {_} {_} {Def (Ord a)} {od→ord t} |
127 | 377 lemma refl (lemma1 lemma-eq )where |
129 | 378 lemma-eq : ZFSubset (Ord a) t == t |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
379 eq→ lemma-eq {z} w = proj2 w |
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
96
diff
changeset
|
380 eq← lemma-eq {z} w = record { proj2 = w ; |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
381 proj1 = def-subst {_} {_} {(Ord a)} {z} |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
382 ( t→A (def-subst {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
383 lemma1 : {a : Ordinal } { t : OD } |
129 | 384 → (eq : ZFSubset (Ord a) t == t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
385 lemma1 {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (==→o≡ eq )) |
276 | 386 lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) x)) |
260
8b85949bde00
sup with limit give up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
259
diff
changeset
|
387 lemma = sup-o< |
129 | 388 |
144 | 389 -- |
258 | 390 -- Every set in OD is a subset of Ordinals, so make Def (Ord (od→ord A)) first |
391 -- then replace of all elements of the Power set by A ∩ y | |
144 | 392 -- |
142 | 393 -- Power A = Replace (Def (Ord (od→ord A))) ( λ y → A ∩ y ) |
166 | 394 |
395 -- we have oly double negation form because of the replacement axiom | |
396 -- | |
397 power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) | |
258 | 398 power→ A t P∋t {x} t∋x = FExists _ lemma5 lemma4 where |
142 | 399 a = od→ord A |
400 lemma2 : ¬ ( (y : OD) → ¬ (t == (A ∩ y))) | |
401 lemma2 = replacement→ (Def (Ord (od→ord A))) t P∋t | |
166 | 402 lemma3 : (y : OD) → t == ( A ∩ y ) → ¬ ¬ (A ∋ x) |
403 lemma3 y eq not = not (proj1 (eq→ eq t∋x)) | |
142 | 404 lemma4 : ¬ ((y : Ordinal) → ¬ (t == (A ∩ ord→od y))) |
405 lemma4 not = lemma2 ( λ y not1 → not (od→ord y) (subst (λ k → t == ( A ∩ k )) (sym oiso) not1 )) | |
166 | 406 lemma5 : {y : Ordinal} → t == (A ∩ ord→od y) → ¬ ¬ (def A (od→ord x)) |
407 lemma5 {y} eq not = (lemma3 (ord→od y) eq) not | |
408 | |
142 | 409 power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t |
410 power← A t t→A = record { proj1 = lemma1 ; proj2 = lemma2 } where | |
411 a = od→ord A | |
412 lemma0 : {x : OD} → t ∋ x → Ord a ∋ x | |
413 lemma0 {x} t∋x = c<→o< (t→A t∋x) | |
414 lemma3 : Def (Ord a) ∋ t | |
415 lemma3 = ord-power← a t lemma0 | |
152 | 416 lemma4 : (A ∩ ord→od (od→ord t)) ≡ t |
417 lemma4 = let open ≡-Reasoning in begin | |
418 A ∩ ord→od (od→ord t) | |
419 ≡⟨ cong (λ k → A ∩ k) oiso ⟩ | |
420 A ∩ t | |
421 ≡⟨ sym (==→o≡ ( ∩-≡ t→A )) ⟩ | |
422 t | |
423 ∎ | |
276 | 424 lemma1 : od→ord t o< sup-o (λ x → od→ord (A ∩ x)) |
425 lemma1 = subst (λ k → od→ord k o< sup-o (λ x → od→ord (A ∩ x))) | |
426 lemma4 (sup-o< {λ x → od→ord (A ∩ x)} ) | |
142 | 427 lemma2 : def (in-codomain (Def (Ord (od→ord A))) (_∩_ A)) (od→ord t) |
151 | 428 lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma6 }) ) where |
429 lemma6 : od→ord t ≡ od→ord (A ∩ ord→od (od→ord t)) | |
430 lemma6 = cong ( λ k → od→ord k ) (==→o≡ (subst (λ k → t == (A ∩ k)) (sym oiso) ( ∩-≡ t→A ))) | |
142 | 431 |
271 | 432 ord⊆power : (a : Ordinal) → (Ord (osuc a)) ⊆ (Power (Ord a)) |
433 ord⊆power a = record { incl = λ {x} lt → power← (Ord a) x (lemma lt) } where | |
434 lemma : {x y : OD} → od→ord x o< osuc a → x ∋ y → Ord a ∋ y | |
435 lemma lt y<x with osuc-≡< lt | |
436 lemma lt y<x | case1 refl = c<→o< y<x | |
437 lemma lt y<x | case2 x<a = ordtrans (c<→o< y<x) x<a | |
262 | 438 |
276 | 439 continuum-hyphotheis : (a : Ordinal) → Set (suc n) |
440 continuum-hyphotheis a = Power (Ord a) ⊆ Ord (osuc a) | |
129 | 441 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
442 extensionality0 : {A B : OD } → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
443 eq→ (extensionality0 {A} {B} eq ) {x} d = def-iso {A} {B} (sym diso) (proj1 (eq (ord→od x))) d |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
444 eq← (extensionality0 {A} {B} eq ) {x} d = def-iso {B} {A} (sym diso) (proj2 (eq (ord→od x))) d |
186 | 445 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
446 extensionality : {A B w : OD } → ((z : OD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B) |
186 | 447 proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d |
448 proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d | |
129 | 449 |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
450 infinity∅ : infinite ∋ od∅ |
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
451 infinity∅ = def-subst {_} {_} {infinite} {od→ord (od∅ )} iφ refl lemma where |
161 | 452 lemma : o∅ ≡ od→ord od∅ |
453 lemma = let open ≡-Reasoning in begin | |
454 o∅ | |
455 ≡⟨ sym diso ⟩ | |
456 od→ord ( ord→od o∅ ) | |
457 ≡⟨ cong ( λ k → od→ord k ) o∅≡od∅ ⟩ | |
458 od→ord od∅ | |
459 ∎ | |
460 infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) | |
223
2e1f19c949dc
sepration of ordinal from OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
219
diff
changeset
|
461 infinity x lt = def-subst {_} {_} {infinite} {od→ord (Union (x , (x , x )))} ( isuc {od→ord x} lt ) refl lemma where |
161 | 462 lemma : od→ord (Union (ord→od (od→ord x) , (ord→od (od→ord x) , ord→od (od→ord x)))) |
463 ≡ od→ord (Union (x , (x , x))) | |
464 lemma = cong (λ k → od→ord (Union ( k , ( k , k ) ))) oiso | |
465 | |
234
e06b76e5b682
ac from LEM in abstract ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
228
diff
changeset
|
466 |
226
176ff97547b4
set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
223
diff
changeset
|
467 Union = ZF.Union OD→ZF |
176ff97547b4
set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
223
diff
changeset
|
468 Power = ZF.Power OD→ZF |
176ff97547b4
set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
223
diff
changeset
|
469 Select = ZF.Select OD→ZF |
176ff97547b4
set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
223
diff
changeset
|
470 Replace = ZF.Replace OD→ZF |
176ff97547b4
set theortic function definition using sup
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
223
diff
changeset
|
471 isZF = ZF.isZF OD→ZF |